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Abstract. We investigate the consequences of contraction of the Lie algebras of the orthogonal
groups to the Lie algebras of the Euclidean groups in terms of separation of variables for Laplace–
Beltrami eigenvalue equations, and the solutions of these equations that arise through separation of
variables techniques, on theN -sphere and inN -dimensional Euclidean space. General ellipsoidal
and paraboloidal coordinates are included, not just the subgroup-type coordinates that have been
the concern of most investigations of contractions as applied to special functions. We pay special
attention to the caseN = 2 where we show in detail, for example, how Lamé polynomials contract
to periodic Mathieu functions. Our point of view emphasizes the characterization of separable
polynomial eigenfunctions in terms of the zeros of these eigenfunctions. We also consider all
possible separable coordinate systems on the complex two-sphere (which includes real hyperboloids
as special cases) and their contraction to flat space coordinates.

1. Introduction

It is well known that contractions of Lie groups and algebras can be used to obtain relations
between many of the classical special functions. The most familiar example is perhaps the
contraction of the rotation groupSO(3) to the Euclidean groupE(2), [1]. In this example
the generators of the Lie algebra ofSO(3), which we denote byLk, satisfy the commutation
relations

[Li, Lj ] = εijkLk (1)

whereεijk is the skew symmetric tensor and summation is on the indexk. An especially
clear and comprehensive study of this contraction can be found in the books by Talman and
Gilmore [2,3]. Consider the matrix element (with respect to the (2`+1)-dimensional irreducible
representation) of a group element ofSO(3) written in Euler angles asD`(α, β, γ )mn, and
changeβ → β/c wherec is large and fixed, i.e.,D`(α, β/c, γ )mn = im−neimαd`mn(β/c)e

−inγ .
Now consider the Lie algebra induced using these matrix elements as a basis and the parameters
α, β, γ , in which case the basis elements for the Lie algebra areL′x = L1/c, L

′
y = L2/c and

L′z = L3. The commutation relations for these new elements are

[L′x, L
′
y ] =

1

c2
L′z [L′y, L

′
z] = L′x [L′z, L

′
x ] = L′y. (2)
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In the limit asc → ∞ these commutators are the same as those of the Lie algebra of the
Euclidean group:

[P1, P2] = 0 [M,P1] = P2 [M,P2] = −P1. (3)

In this limit L′z is identified withM,L′x with −P2 andL′y with P1. In order for the algebraic
relations to have a finite limit we require that the index` which labels the irreducible
representation behaves likec asc becomes large. Specifically we require that` ≈ c. The
matrices representingL′+ = L′x + iL′y andL′− = L′x − iL′y have elements given by

(L′+)mn = −
i

c
[(`− n)(` + n + 1)]1/2δm,n+1

(L′−)mn = −
i

c
[(` + n)(`− n + 1)]1/2δm,n−1.

Then in the limit as̀ → ∞ the matrix elements ofL′+ andL′− assume the form of the
matrix elements ofP+ andP− in a representation ofE(2) labelled byχ . We can take the same
limit in the group representations. In this limit one obtains

d`mn

(
χβ

c

)
→ im−nJm−n(χβ) (4)

asc→∞, whereJm(x) is a Bessel function [4].
This result is a very special case of the limit procedure for solutions of Laplace–Beltrami

eigenvalue equations on theN -sphere as the symmetry group of theN -sphere,SO(N + 1),
contracts to the symmetry groupE(N) of EuclideanN -space. The first investigation of the
connection between contractions of the Lie algebras o(3) and o(2,1) to e(2) and separation
of variables was undertaken in [5, 6]. Our objective here is to establish, in detail, just how
the contraction procedure works for the various separable coordinates on the two-dimensional
sphere if the Lie algebra ofSO(3) is contracted to that ofE(2) and, in general terms, how
the procedure works for theN -sphere. The analysis of contractions in [2], and in the recent
literature, e.g., [7], emphasizes subgroup coordinates. Here we treat the most general separable
systems.

2. Separable coordinates inN dimensions

We review the construction of separable coordinates for Laplace–Beltrami eigenvalue equations
on theN -sphere andN -dimensional Euclidean space, [8,9], and show how they are related by
contractions.

Elliptic coordinates on the sphere.This is the basic separable coordinate system on theN -
sphere. Here,X0, . . . , XN are Cartesian coordinates,e0, . . . , eN are constants andu1, . . . , uN
are elliptic coordinates. The coordinates are related by

N∑
k=0

X2
k

u− ek =
∏N
k=1(u− uk)∏N
j=0(u− ej )

N∑
k=0

X2
k = 1 (5)

whereu is a parameter and

e0 < u1 < e1 < u2 < · · · < eN−1 < uN < eN.

X2
` =

∏N
k=1(e` − uk)∏
j 6=`(e` − ej )

j, ` = 0, . . . , N. (6)
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The metric on the sphere is

ds2
e =

N∑
`=0

dX2
` =

N∑
k=1

∏
m6=k(um − uk)∏N
`=0(uk − e`)

du2
k. (7)

The action of the Lie algebra ofSO(N + 1) on the sphere is given by the operators

Lkj = Xk∂Xj −Xj∂Xk k, j = 0, 1, . . . , N. (8)

The commutation relations are

[Lkj , Lqs ] = δjqLks − δkqLjs − δjsLkq + δksLjq k, j, q, s = 0, 1, . . . , N. (9)

The Laplace–Beltrami eigenvalue equation is

IN1 9 = −λ19 IN1 ≡
∑
i,j

L2
ij λ1 = σ(σ +N − 1) (10)

wherei, j = 0, 1, . . . , N . A separable solution9 = ∏N
k=1ψk(uk) is characterized by the

eigenvalue equations

INk 9 = −λk9 IN` =
∑
i>j

S
(ij)

k (e)L2
ij k = 1, . . . , N (11)

whereSk(e) are thekth-order elementary symmetric polynomials ofe0, . . . eN , or

Sk(e) =


∑

i1>i2>···>ik
ei1 . . . eik 16 k 6 N + 1

1 k = 0

0 k > N + 1

(12)

and S
ij

k (e) are defined as thekth-order symmetric polynomials ofe0, . . . ej−1,

ej+1, . . . ei−1, ei+1, . . . eN .
Here,

[INj , INk ] = 0. (13)

The separable solutions satisfy the separation equations

−4
√
Pk

d

duk

(√
Pk

dψk
duk

)
+

[ N∑
j=1

λj (uk)
N−j

]
ψk = 0 k = 1, . . . , N (14)

where

Pk =
N∏
q=0

(uk − eq).

Elliptic coordinates in Euclidean space.This is the fundamental separable system inN -
dimensional Euclidean space. Here,x0, . . . , xN−1 are Cartesian coordinates,e0, . . . , eN−1 are
constants andu1, . . . , uN are elliptic coordinates. The coordinates are related by

N−1∑
k=0

x2
k

u− ek − c
2 = −c2

∏N
k=1(u− uk)∏N−1
j=0 (u− ej )

(15)

where

e0 < u1 < e1 < u2 < · · · < eN−1 < uN
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and

x2
` = −c2

∏N
k=1(e` − uk)∏
j 6=`(e` − ej )

j, ` = 0, . . . , N − 1. (16)

The metric is

ds2
E =

N−1∑
j=0

dx2
j =

c2

4

N∑
k=1

∏
m6=k(um − uk)∏N−1
`=0 (uk − e`)

du2
k. (17)

The action of the Lie algebra ofE(N) on Euclidean space is given by the operators

Lkj = xk∂xj − xj∂xk Pj = ∂xj (18)

wherek, j = 0, 1, . . . , N − 1. The commutation relations are

[Lkj , Lqs ] = δjqLks − δkqLjs − δjsLkq + δksLjq (19)

[Pj , Lqs ] = δjqPs − δjsPq k, j, q, s = 0, 1, . . . , N − 1. (20)

The Laplace–Beltrami eigenvalue equation is

1J N1 9 = −µ19 1J N1 ≡
N−1∑
j=0

P 2
j µ1 = k2 > 0. (21)

A separable solution9 =∏N
k=1ψk(uk) is characterized by the eigenvalue equations

1J Nk 9 = −µk9 k = 1, . . . , N (22)

where

1J N` =
∑
i>j

S
(ij)

`−2(e)L
2
ij + c2

N−1∑
i=0

S
(i)
`−1(e)P

2
i ` = 2, . . . , N (23)

and

[1J Nj , 1J Nk ] = 0. (24)

The separable solutions satisfy the separation equations

−4
√
Qk

d

duk

(√
Qk

dψk
duk

)
+

[ N∑
j=1

µj(uk)
N−j

]
ψk = 0 k = 1, . . . , N (25)

where

Qk =
N−1∏
q=0

(uk − eq).

Parabolic coordinates in Euclidean space.This is a second fundamental separable system
inN -dimensional Euclidean space, though as we shall show, it can be obtained by contraction
from elliptic coordinates in Euclidean space. Here,y0, . . . , yN−1 are Cartesian coordinates,
e1, . . . , eN−1 are constants andu1, . . . , uN are parabolic coordinates. The coordinates are
related by

−2cy0 − c2u +
N−1∑
k=1

y2
k

u− ek = −c
2

∏N
k=1(u− uk)∏N−1
j=1 (u− ej )

(26)

y0 = c

2

(
−

N∑
j=1

uj +
N−1∑
k=1

ek

)
(27)

y2
i = −c2

∏N
j=1(uj − ei)∏
k 6=i (ek − ei)

i, k = 1, . . . , N − 1 j = 1, . . . , N (28)
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where

u1 < e1 < u2 < e2 < · · · < eN−1 < uN.

The metric is

ds2
P =

N−1∑
`=0

dy2
` =

c2

4

N∑
k=1

∏
m6=k(um − uk)∏N−1
`=1 (uk − e`)

du2
k. (29)

The action ofE(N) is given by (18), withxi replaced everywhere byyi .
The Laplace–Beltrami eigenvalue equation is

2J N1 9 = −ρ19 2J N1 ≡
N−1∑
j=0

P 2
j ρ1 = k2 > 0. (30)

A separable solution9 =∏N
k=1ψk(uk) is characterized by the eigenvalue equations

2J Nk 9 = −ρk9 k = 1, . . . , N (31)

where

2J N` = −
∑
i>j>0

S
(ij)

`−3(e)L
2
ij + c2

N−1∑
i=1

S
(i)
`−1(e)P

2
i + c

N−1∑
j=1

S
(j)

`−2(e){Pj , Lj0}+

+c2S`−1(e)P
2
0 ` = 2, . . . , N (32)

and{A,B}+ = AB + BA. The sumsSk(e) are defined as before, except thatS
(ij)

−1 (e) = 0,
e0 = 0. We have

[2J Nj , 2J Nk ] = 0. (33)

The separable solutions satisfy the separation equations

−4
√
Hk

d

duk

(√
Hk

dψk
duk

)
+

[ N∑
j=1

ρj (uk)
N−j

]
ψk = 0 k = 1, . . . , N (34)

where

Hk =
N−1∏
q=1

(uk − eq).

Elliptic coordinates on sphere⇒ Elliptic coordinates in Euclidean space.We describe in
detail how one obtains elliptic coordinates in Euclidean space from elliptic coordinates on the
sphere, via contraction. Let, as usual, the Cartesian coordinates on the sphere be denoted

(X0, . . . , XN)

N∑
`=0

X2
` = 1

and set the inhomogeneous coordinates [5]

x2
j = Rc2

X2
j

X2
N

j = 0, . . . , N − 1. (35)

LetR = eN → +∞. ThenXN → 1 and

x2
j (R)→−c2

∏N
k=1(ej − uk)∏
`6=j (ej − e`)

j, ` = 0, . . . , N − 1 (36)

ds2
E = −

c2

4
lim

R=eN→∞
Rds2

e (eN). (37)
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This amounts to letting the radiusr = √R of theN -sphere and a focus go to∞. (Similarly,
can take the limitR = −e0→ +∞withX0→ 1 to get Euclidean elliptic coordinates{e′`, u′j }
with e′` = −eN−`, u′j = −uN−j+1, ` = 0, . . . , N − 1 andj = 1, . . . , N .)

Making the change of coordinates (35), we see that the Lie algebra action transforms as
follows:

LNs = XN∂Xs −Xs∂XN = c
√
R∂xs +

xs

c
√
R

N−1∑
j=0

xj∂xj (38)

Lks = Xk∂Xs −Xs∂Xk = xk∂xs − xs∂xk s, k = 0, . . . , N − 1. (39)

Now we setP ′s = limR→∞ 1
c
√
R
LNs , L′ks = Lks and verify that, in the limit, the primed

operators and their commutation relations agree with (18)–(20) for the action ofE(N).
Furthermore, one can easily verify that

I ′N1 ≡ lim
R→∞

1

c2R
IN1 = 1IN1 I ′Nk ≡ lim

R→∞
1

R
INk = 1INk k = 2, . . . , N. (40)

Thus the operators defining separation in elliptic coordinates on the sphere go in the limit to
the operators defining separation in elliptic coordinates on Euclidean space.

Now suppose9 is a separable solution on the sphere, i.e., it satisfies eigenvalue equations
(11). Then if we consider a one-parameter family9(R) of solutions such thatλ1 ≈ c2Rµ1,
λk ≈ Rµk, k = 2, . . . , N , and9 ′ = limR=en→∞9(R) exists and is non-zero, it follows that
9 ′ satisfies the eigenvalue equations (22) for separation in elliptic coordinates on Euclidean
space.

Elliptic coordinates in Euclidean space⇒ Parabolic coordinates. Now we describe how to
obtain parabolic coordinates in Euclidean space from elliptic coordinates in Euclidean space,
via contraction.

Set

c2(R − y0

c
)2 = −Rc2

∏N
j=1(e0 − uj )∏N−1
k=1 (e0 − ek)

(41)

y2
j = Rc2

∏N
k=1(uk − ej )∏
`6=j (e` − ej )

(42)

j = 1, . . . , N − 1 k = 1, . . . , N ` = 0, . . . , N − 1

i.e., set

y0 = cR −
√
Rx0 yk =

√
Rxk k = 1, . . . , N − 1 (43)

where thexi are Cartesian coordinates (18), related to elliptic coordinates via (16).
LetR = −e0→ +∞. Then, in the limit, (41) and (42) yield, respectively,

−2cy0 = c2

( N∑
k=1

uk −
N−1∑
j=1

ej

)
(44)

y2
j = −c2

∏N
k=1(uk − ej )∏
k 6=j (ek − ej )

. (45)

ds2
P = lim

R=−e0→∞
Rds2

E (e0). (46)

Furthermore, from (43) we have

L`k = x`∂xk − xk∂x` = y`∂yk − yk∂y`
L0k = x0∂xk − xk∂x0 = −yo∂yk + yk∂y0 + cR∂yk

P0 = ∂x0 = −
√
R∂y0 Pk = ∂xk =

√
R∂yk k, ` = 1, . . . , N − 1.
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Now we define new operators by

L′`k = L`k L′0k = lim
R=−e0→∞

(L0k − c
√
RPk)

P ′k = lim
R=−e0→∞

Pk√
R

P ′0 = − lim
R=−e0→∞

P0√
R

(47)

and see that in the limit these operators satisfy (18).
Also, one can easily verify that

1J ′Nk ≡ lim
R=−e0→∞

1

R
INk = 2J Nk k = 1, . . . , N. (48)

Thus the operators defining separation in elliptic coordinates on Euclidean space go in the limit
to the operators defining separation in parabolic coordinates on Euclidean space.

Now suppose9 is a separable solution in Euclidean elliptic coordinates, i.e., it satisfies
eigenvalue equations (22). Then if we consider a one-parameter family9(R) of solutions
such thatµk ≈ Rρk, k = 1, . . . , N , and9 ′ = limR=−e0→∞9(R) exists and is non-zero, it
follows that9 ′ satisfies the eigenvalue equations (31) for separation in parabolic coordinates
on Euclidean space.

3. Hybrid separable coordinate systems

A complete description of separable coordinate systems on theN -sphere and on Euclidean
N -space, and a graphical method for constructing these systems can be found in [8, 9]. Here
we mention some of the main ideas.

The basic elliptic coordinate system on theN -sphere is denoted

[e0|e1| · · · |eN ]. (49)

All separable coordinate systems on theN -sphere can be obtained by nesting these basic
coordinates for thek-spheres fork 6 N . For example we can obtain a separable coordinate
system on theN -sphere by starting with a basic elliptic coordinate system on the(N − k)-
sphere and embedding in it ak-sphere. Thek-sphere Cartesian coordinates(V0, . . . , Vk) can be
attached to any one of theN−k+1 Cartesian coordinates(U0, . . . , UN−k)of the(N−k)-sphere.
Let us attach it to the first coordinate. Then we have

(X0, . . . , XN) = (U0V0, . . . , U0Vk, U1, . . . , UN−k)
k∑
`=0

V 2
` = 1 (50)

V 2
` =

∏k
i=1(vi − f`)∏
i 6=`(fi − f`)

U2
0 =

∏N−k
t=1 (ut − e0)∏
i 6=0(ei − e0)

(51)

ds2 = ds2
1 +U2

0 ds2
2 ds2

1 =
N−k∑
h=0

dU2
h ds2

2 =
k∑
`=0

dV 2
` . (52)

The resulting system is denoted graphically by

[ e0 | e1 | · · · | eN−k ]
↓

[ f0 | · · · | fk ] . (53)
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Here is another possibility:

[ e0 | e1 | · · · | eN−k−`−m ]
↓ ↘

[ f0 | f1 | · · · | fk ] [ g0 | · · · | g` ]
↓

[ h0 | · · · | hm ]. (54)

Each separable system can be obtained in this way via embeddings. The graph is a tree whose
nodes are basic elliptic coordinate systems.

For Euclidean space the results are a bit more complicated. The basic ellipsoidal coordinate
system onN -space is denoted

〈e0|e1| · · · |eN−1〉 (55)

and the parabolic coordinate system is

(e1| · · · |eN−1). (56)

The graphs need no longer be trees; they can have several connected components. Each
connected component is a tree with a root node that is either of the form (55) or (56). Just as
above, spheres (49) can be embedded in the root coordinates or to each other. Here are two
examples:

(1) Cartesian coordinates in two-space:

〈e0〉 〈e′0〉 (57)

and
(2) oblate spheroidal coordinates in three-space.

〈 e0 | e1 〉
↓

[ a1 | a2 ]. (58)

Procedure for contractions from general separable coordinates on theN -sphere (labelled by
a tree) to ellipsoidal-type coordinates in EuclideanN -space.

(1) Go to the root of the tree:

[e0|e1| · · · |ek−1].

(2) Erase either the left-hand square or the right-hand square in thisk-square block. The
resulting(k − 1)-block becomes a diamond block, say

〈e1| · · · |ek−1〉
denoting ellipsoidal coordinates in Euclidean space.

(3a) If the erased square is not connected to some lower block, the process ends.
(3b) If the erased square is connected to a lower block, erase the edge, proceed to the lower

block and repeat step (2).

When the process ends we have a coordinate system in Euclidean space with one more
component than the number of edges erased.

For example, one result of contracting (53), in particular lettingR = eN−k → ∞, is to
obtain the EuclideanN -space coordinate system

〈 e0 | e1 | · · · | eN−k−1 〉
↓

[ f0 | · · · | fk ]. (59)
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We treat another example in detail, a coordinate system on the six-sphere:

[ e0 | e1 | e2 ]
↙ ↘

[ f0 | f1 | f2 | f3 ] [ 0 | 1 ]. (60)

The presciption for writing down the invariant operators corresponding to embedded coordinate
systems can be found in [8,9]. The results in this case are

I1 =
∑
i>j

L2
ij 06 i, j 6 6

I2 = e0(L
2
64 +L2

65) + e1

3∑
i=0

L2
6i + e2

3∑
i=0

(L2
4i +L2

5i )

I3 =
∑
k>`

L2
k` 06 k, ` 6 3

I4 = L2
01(f2 + f3) +L2

02(f1 + f3) +L2
03(f1 + f2) +L2

12(f0 + f3) +L2
13(f0 + f2)

+L2
23(f0 + f1)

I5 = L2
01f2f3 +L2

03f1f2 +L2
12f0f3 +L2

13f0f2 +L2
23f0f1

I6 = L2
45.

(61)

In the limit asR = e2→∞ with eigenvaluesλj = Rµj , j = 1, 2 andλk = µk, 36 k 6 6,
we get the coordinate system in Euclidean six-space

〈 e0 | e1 〉
↙ ↘

[ f0 | f1 | f2 | f3 ] [ 0 | 1 ] (62)

with invariant operators

I ′1 =
5∑
i=0

P 2
i

I ′2 = c2e0(P
2
4 + P 2

5 ) + c2e1

3∑
i=0

P 2
i +

3∑
i=0

(L2
4i +L2

5i )

I ′k = Ik 36 k 6 6.

(63)

4. The real two-sphere

To see in detail how this contraction works on the two-sphere, and its relation to special
functions, we can specialize the Bessel function example to the case whenn = 0 so that the
limit (4) has the form [1,5]

P`m

(
cos

(
χβ

c

))
→ imJm(χβ)

to within a suitable normalization, whereP`m(x) is an associated Legendre polynomial.
(For generaln one needs to employ the Laplace–Beltrami operator on the three-sphere [7].)
Spherical coordinates on the two-sphere are given by

s2
1 =

(u1− e0)(u2 − a0)

(e1− e0)(a1− a0)
s2
2 =

(u1− e0)(u2 − a1)

(e1− e0)(a0 − a1)

s2
3 =

(u1− e1)

(e0 − e1)

(64)
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where e0 < u1 < e1, and a0 < u2 < a1. Here s2
1 + s2

2 + s2
3 = 1. This can be

recognized as the rational form of the normal spherical coordinates. Indeed if we were to
make transformations of the formu → αu + β we could define new variablesv1, v2 and
effectively take 0< v1 < 1, 0 < v2 < 1. The variablesv1, v2 could then be identified as
v1 = sin2 θ andv2 = cos2 ϕ, the normal spherical coordinates. The way we have defined
spherical coordinates in this case corresponds to the choice of graph:

[ e0 | e1 ]
↓

[ a0 | a1 ]. (65)

The corresponding Laplace–Beltrami eigenvalue equation has the form[
4(u1− e0)(u1− e1)

[
∂2
u1

+
1

2

(
2

u1− e0
+

1

u1− e1

)
∂u1

]
+
e0 − e1

u1− e0
(u2 − a0)(u2 − a1)

×
[
∂2
u2

+
1

2

(
1

u2 − a0
+

1

u2 − a1

)
∂u2

]
+ `(` + 1)

]
9 = 0.

If we now make the requirement thate1 ≈ `2/χ2 as`→∞ then the corresponding equation
is[
4(u1− e0)

[
∂2
u1

+
1

u1− e0
∂u1

]
+

1

u1− e0
(u2 − a0)(u2 − a1)

×
[
∂2
u2

+
1

2

(
1

u2 − a0
+

1

u2 − a1

)
∂u2

]
+ χ2

]
9 = 0. (66)

In both cases9 can be written as8A(u2) whereA(u2) satisfies[
(u2 − a0)(u2 − a1)

(
∂2
u2

+
1

2

(
1

u2 − a0
+

1

u2 − a1

))
∂u2

]
A(u2) = −m2A(u2). (67)

In the case of coordinates on the sphere the resulting separation equation for8 is[
4(u1− e0)(u1− e1)

[
∂2
u1

+
1

2

(
2

u1− e0
+

1

u1− e1

)
∂u1

]
− e0 − e1

u1− e0
m2 + `(` + 1)

]
8 = 0.

(68)

In the limit ase1 ≈ `2/χ2 and`→∞ the corresponding equation becomes[
4(u1− e0)

[
∂2
u1

+
1

u1− e0
∂u1

]
− m2

u1− e0
+ χ2

]
9 = 0. (69)

This is a form of Bessel’s equation [4]. To establish the basic mechanism for separation
we examine the equation for8. If we consider the separation equation and write8 =
(u1− e0)

m/23(u1) then the equation for3 is

{4(u1− e0)(u1− e1)∂
2
u1

+ [u1(6 + 4m)− 2e0 − 4e1(m + 1)]∂u1−(`−m)(` +m + 1)}3 = 0.

(70)

If we look for a polynomial solution for3 of the form3 = 5q

h=1(u1 − θh) we see that we
have a solution if and only if the zerosθh satisfy the fundamental relation [10,11]

2(m + 1)

θj − e0
+

1

θj − e1
+
∑
k 6=j

4

θj − θk = 0. (71)
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This is the familiar form of the equations determining the zeros of the generalized Legendre
polynomials. In order to determine how the polynomial behaves as`, e1 → ∞ we write
instead of3,3′ = 5q

j=1[1 − (u1 − e0)/(θj − e0)]. We can deduce two important relations
amongst theθj . We use the notationS0 =

∑q

f=1(θf − e0)
−1 , S1 =

∑q

f=1(θf − e1)
−1 and

obtain

2(m + 1)S0 + S1 = 0

2(m + 1)e0S0 + e1S1 + 1
2(`−m)(` +m + 1) = 0

where we have used the fact thatq = (`−m)/2. Indeed, the first relation follows by summing
equations (71) onj , and the second follows by multiplying each equation byθj and then
summing onj . As `→∞ we see that these relations imply

Ŝ0 = lim
`→∞

∑̀
f=1

1

θf − e0
= χ2

4(m + 1)
Ŝ1 = lim

`→∞

∑̀
f=1

1

θf − e1
= −1

2
χ2.

(Note that theθf themselves depend oǹ.) Using the identities satisfied by the zeros of the
polynomials3′ we can further deduce that

2(m + 1)
q∑

f=1

1

(θf − e0)2
+

1

e1− e0
(S1− S0)− 2

∑
g 6=f

1

(θg − e0)(θf − e0)
= 0

in addition to the identity

S2
0 =

q∑
f=1

1

(θf − e0)2
+
∑
g 6=f

1

(θg − e0)(θf − e0)
.

From these two requirements we conclude that as`→∞∑
g 6=f

1

(θg − e0)(θf − e0)
→ χ4

16(m + 1)(m + 2)
.

Consequently if we evaluate the successive equations in this way we obtain, formally,

8 = (u1− e0)
m
2

(
1− χ2

4(m + 1)
(u1− e0) +

χ4

32(m + 1)(m + 2)
(u1− e0)

2 − · · ·
)

which can be recognised [4] as the first few terms of the expansion of

2m0(m + 1)Jm
(
χ
√
u1− e0

)
.

Note that for a polynomial separated solution of orderq, with zerosθf we have expansions
aboutes , s = 0, 1, given by

3(ui) =
q∏

f=1

(
1− ui − es

θf − es

)
=

q∑
j=1

cj (ui − es)j (72)

where

c0 = 1 cj = (−1)j

j !

∑
i1,i2,...,ij 6=

1

(θi1 − es) · · · (θij − es)
j = 1, 2, . . . , q. (73)

As q →∞ we pass through a family of polynomials and obtainCj = limq→∞ cj (q), where
Cj is the coefficient of(u− es)j in the separated (non-polynomial) solution corresponding to
the contracted coordinates. Thus these coefficients can be evaluated in terms of limits of the
sums (73) of terms involving the zeros of the polynomial solutions.
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Let n1, n2, . . . , nk be a partition ofn, i.e.,

n1 > n2 > · · · > nk > 0 n1 + · · · + nk = n.
One can also denote this partition by 1t12t2 . . . ntn wheret1 + · · · + tn = k andti is the number
of occurrences of the integeri in the partition ofn. We introduce the notation

{n1, . . . , nk}(es) ≡ {1ti . . . ntn} ≡ n =
∑

i1,...,ik 6=

1

(θi1 − es)n1 . . . (θik − es)nk
. (74)

Here the indicesi` in a given term take values from 1 toq, except that the indices in a term are
pairwise distinct. The number of terms in the sum isq!/(q − k)!. We shall show that all such
sums, hence their limits, can be evaluated directly from (71).

First we note that the sums multiply in a simple fashion:

{n1, . . . , nk} · {m1, . . . , m`} ≡ n ·m =
∑

p1,...,pk+`

ap1,...pk+`{p1, . . . , pk+`} (75)

where thea are integers> 0, andp1, . . . , pk+` is a partion ofn + m. (For convenience, we
adopt the convention{n1, . . . , nk, 0} ≡ {n1, . . . , nk}.)

The following are the rules to find the nonzero terms on the right-hand side of (75).

(1) Pick anyh-element subsetns1, . . . , nsh (s1 < s2 < · · · < sh) of n and anyh-element
subsetmr1, . . . , mrh (in any order) ofm. Then the sum

{ns1 +mr1, ns2 +mr2, . . . , nsh +mrh,n
′,m′}

with terms properly reordered, will be included once on the right-hand side of (75). Here
n′ isnwith ns1, . . . , nsh deleted andm′ ismwithmr1, . . . , mrh deleted. This is a partition
of n +m which hash + (n− h) + (m− h) = n +m− h nonzero terms.

(2) Repeat the preceding step for allh-element subsets ofn andm, and for all h =
0, 1, . . . ,min(k, `). The sum of all partitions ofn + m so constructed is the right-hand
side of (75).

Some examples are (all sums depend on a commones):

{1, 1} · {1, 1, 1} ≡ {12} · {13} = 6{22, 1} + 6{2, 13} + {15}
{2} · {12} = 2{3, 1} + {2, 12} {2} · {3} = {5} + {3, 2}
{2, 1} · {12} = 2{3, 2} + 2{3, 12} + 2{22, 1} + {2, 13}.

We show how, in principle, one can compute all the sumsn(es). To be definite we take
s = 0, but a slight modification of the argument works fors = 1. First, multiplying each
term of (71) by(θj − e0)

−n+1, summing onj and expanding in partial fractions, we obtain the
identity:

2(m + 1){n}(e0)−
n−1∑
j=1

{n− j}(e0)

(e1− e0)j
+
{1}(e1)

(e1− e0)n−1

−4

( [ n2 ]∑
`=1

{n− `, `}(e0)− 1

2

{
n

2
,
n

2

}
(e0)

)
= 0 (76)

where{ n2, n2}(e0) = 0 if n is odd. We are given{1}(e0) = S0 and{1}(e1) = S1. It follows
from (76) that

{n− k} · {k} = {n} + {n− k, k} (77)
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and by a simple induction argument that we can compute all sums{n1} and{n1, n2}. Now
suppose we know{n1, . . . , nk} for all n1 > · · · > nk > 0 andk = 1, 2, . . . , k0 − 1. Then we
can use the fact that

{n1, . . . , nk} · {nk+1} = {n1, . . . , nk+1} + partitions with6 k nonzero terms

to compute all{n1, . . . , nk0} such thatn1 > n2 > · · · > nk0 > 0. Thus we can computeall
{n1, . . . , nk}.

We now perform the analogous limiting process for the case of ellipsoidal coordinates on
the sphere. We will initially treat these coordinates on theN -sphere, and then specialize to
the two-sphere to take the limit. These coordinates have the form (6). We want to compute
polynomial separable solutions of orderq of the Laplace–Beltrami eigenvalue equation and
then letq →∞. A key observation is the identity (5). Based on this, we look for solutions of
the form

9 = 5q

j=1

( N∑
k=0

X2
k

θj − ek−1

)
≈ 5q

j=15
N
i (ui − θj ). (78)

If we drop the constraint that
∑

k X
2
k = 1 then the polynomials (78) are homogeneous of

order 2q in the coordinatesXk. By passing to polar coordinates, it is easy to show that
the unconstrained function (78) is harmonic, i.e., it satisfies the Euclidean space Laplace
equation [10]

1N+19 = 0 1N+1 =
N∑
h=0

∂2
Xh

(79)

if and only if the function (78), constrained to theN -sphere satisfies the eigenvalue equation

1̂N9 = −2q(2q +N − 1)9 (80)

where1̂N is the Laplace–Beltrami operator (10) on theN -sphere. Substituting the polynomial
(78) into (79), we see that this equation is satisfied if and only if [10,11]

N∑
s=0

1

θj − es +
∑
k 6=j

4

θj − θk = 0 (81)

wherej, k take values from 1 toq. Moreover, substituting the second equation of (78) into the
separation equations (14) we see that the separation constants and the zeros of the polynomials
are related by

{1}(es) = 1

2

∑N
`=1 λ`e

N−`
s

5h6=s(eh − es) (82)

whereλ1 = 2q(2q +N − 1).
By computing the inverse matrix to the Vandermonde matrix [12, p 36], we find the identity

(i, t = 0, . . . , N)

δit = (−1)t+N
N∑
s=0

ets

5`6=s(es − e`)
p=N−i∑

i1,...,ip 6=;i1,...,ip 6=s
ei1 . . . eip .

This allows us to invert relations (82):

λ` = 2(−1)N−`+1
N∑
s=0

{1}(es)
∑

i1,...,i` 6=;i1,...,i` 6=s
ei1 . . . ei` ` = 1, . . . , N

0=
N∑
s=0

{1}(es).
(83)
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Exactly as in our preceding example, we can define sums{n1, . . . , nk}(es) and a minor
alteration of the argument given there shows that all such sums can be evaluated explicitly
from (81) and (82). Moreover, ifeN → ∞ according to the prescription following (40), the
limits of all these sums exist and are finite.

Now we return to the caseN = 2. See also [5]. On the two-sphere the separation equations
have the form [13,14][
− 4(ui − e0)(ui − e1)(ui − e2)

[
∂2
ui

+
1

2

(
1

ui − e0
+

1

ui − e1
+

1

ui − e2

)
∂ui

]
+`(` + 1)ui + λ2

]
ψi(ui) = 0

wherei = 1, 2 and9 = ψ1(u1)ψ2(u2). If we now proceed to the limite2 ≈ `2/χ2 as`→∞
with the additional provision thatλ2 ≈ −τ 2`2/χ2, the separation equations become[
4(ui − e0)(ui − e1)

[
∂2
ui

+
1

2

(
1

ui − e0
+

1

ui − e1

)
∂ui

]
+ χ2ui − τ 2

]
ϕi(ui) = 0. (84)

From previous work we know that in the case of the sphere the corresponding separable
solutions are Laḿe polynomials and in the case of Euclidean space, Mathieu functions [4,15].
We now examine the contraction process as outlined for these coordinate systems. We have

`(` + 1) = 2[(e1 + e2)S0 + (e0 + e2)S1 + (e0 + e1)S2]

λ2 = −2[e1e2S0 + e0e2S1 + e0e1S2]

0= S0 + S1 + S2

(85)

whereSi =
∑q

j=1
1

θj−ei . As `→∞ these three relations imply

Ŝ2 = −χ
2

2
Ŝ0 + Ŝ1 = χ2

2
e1Ŝ0 + e0Ŝ1 = τ 2

2
.

Thus

Ŝ0 = 1

e0 − e1

(
e0χ

2

2
− τ

2

2

)
Ŝ1 = 1

e1− e0

(
e1χ

2

2
− τ

2

2

)
.

If we now look at the limiting behaviour of the polynomials3′ = 5q

j=1(1− u1/θj ) as
`→∞, just as we did previously, we have formally, takinge0 = 0, that

3′ = 1− τ 2

2e1
u1 +

1

12e2
1

[τ 2(τ 2 + 2) + 2χ2e1]u2
1 + · · · . (86)

Note that (86) is obtained by assuming that the limit of an unbounded sum of monomials is
equal to the infinite sum of the limits of the individual monomials, and this is by no means
obvious. We will give a rigorous proof at the end of this section.

In order to identify this solution we note that with the choice of variablese1 =
1, u = sin2 θ, q = χ/2 anda = χ2/2 − τ 2 the separation equation foru takes the form
(∂2
θ +a−2q cos 2θ)ϕ = 0 which is the standard form of Mathieu’s equation. With appropriate

choice ofτ the series developed above for3′ will be one of the following (where we use the
notation of McLachlan [16]):
(1) {0, 0, 0}

52m
j=1

(
1− u

θj

)
→ ce2m(u, χ) = ce2m(θ, q)

ce2m(0, q)
a = a2m

(2) {1, 0, 0}
u1/252m+1

j=1

(
1− u

θj

)
→ se2m+1(u, χ) = se2m+1(θ, q)

se′2m+1(0, q)
a = b2m+1
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(3) {0, 1, 0}

(1− u)1/252m+1
j=1

(
1− u

θj

)
→ ce2m+1(u, χ) = ce2m+1(θ, q)

ce2m+1(0, q)
a = a2m+1

(4) {1, 1, 0}

u1/2(1− u)1/252m+2
j=1

(
1− u

θj

)
→ se2m+2(u, χ) = se2m+2(θ, q)

se2m+2(0, q)
a = b2m+2.

These are the only cases that we need consider as we can readily see that{ε1, ε2, 0} ≈
(1/e1/2

3 ){ε1, ε2, ε3} ase3→∞.
The formal limit (86) needs rigorous justification. We sketch some of the details involved

in recovering a periodic Mathieu function from the limits of the Lamé polynomials3q(u1).
The operatore−1

2 I 2
2 , used in the limiting procedure to calculateI ′22, takes the form

e−1
2 I 2

2 = L2
01 +

e1

e2
L2

02 +
e0

e2
L2

12

and from the well known action of the operatorsL01, L02, L12 defining the (2̀+1)-dimensional
irreducible representationD` of SO(3) [2] and Ger̆sgorin’s theorem [12] we can verify that,
as` grows without bound, each of the eigenvaluese−1

2 λ2 of e−1
2 I 2

2 lies in one of the intervals∣∣∣∣λ2

e2
+ 4k2 +

χ2

2
(e0 + e1)

∣∣∣∣ 6 (e1− e0)χ
2 k = 0, 1, . . . .

Further, fork and` suitably large so that thek-interval does not overlap any of the other
intervals, there is exactly one eigenvalueλ2 in thek-interval for fixedk, `. Since this interval
is compact, there is a sequence of eigenvaluesλ2,qχ

2/`2, ` = 2q, such thatλ2,qχ
2/`2→−τ 2

as q → ∞, with −τ 2 in the k-interval. We will show that−τ 2 is a discrete eigenvalue
corresponding to the Mathieu equation.

With a very similar argument to that in (74)–(77) we can determine all of the sums (74).
In particular, these all have finite limits fore2 = `2/χ2 as` = 2q → ∞. Since the sums
{2}q(es) are finite and have finite limits asq →∞ for s = 0, 1, 2, it follows that there exists
a positive constantκ such that|θp(q) − es |−1 < κ for s = 0, 1, p = 1, 2, . . . , q and allq.
Since{2}q(e0) is uniformly bounded inq, there must be a strict upper bound on the number
of zerosθp(q) in the intervale0 < θp(q) < e1, uniform for allq. Call this upper boundP .

Each polynomial in the sequence3q(u1), q = 0, 1, . . . , can be written in the form

3q(u1) =
Pq∏
p=1

(
1− u1− e0

θp(q)− e0

) q∏
p=Pq+1

(
1− u1− e0

θp(q)− e0

)
= 3(1)

Pq
3
(2)
q−Pq (87)

where

e0 < θp(q) < e1 p = 1, . . . , Pq
e1 < θp(q) < e2(q) p = Pq + 1, . . . , q

andPq 6 P . Note that the polynomial3(2)(u1) takes the value 1 foru1 = e0 and that this
polynomial is strictly positive and monotone decreasing in the intervale0 6 u1 6 e1. It follows
that the polynomials{3q(u1)} are uniformly bounded on [e0, e1] for all q. Furthermore, since
{j}q(e0), {j}q(e1) are uniformly bounded forj = 1, 2 it follows easily that the derivatives

dk

du1
k 3q(u1), k = 1, 2, 3 are also uniformly bounded in absolute value. Thus each of the families

{3q}, {3′q}, {3′′q} is equicontinuous and uniformly bounded. Using Arzelà’s theorem, [17],
we can choose a subsequence{λq ′ } of {3q} such that

3q ′(u1)→ ϕ(u1) 3′q ′(u1)→ ϕ′(u1) 3′′q ′(u1)→ ϕ′′(u1)



4724 E G Kalnins et al

uniformly on [e0, e1] as q ′ → ∞. Hence,ϕ satisfies (84) and, ife0 = 0, the expansion
(86). Sinceϕ is bounded on [e0, e1] it is a periodic Mathieu function and−τ 2 is in the point
spectrum.

5. The complex two-sphere and plane

A main thrust of this paper is to demonstrate how the notion of contraction based on the classical
examples extends to the various separable coordinate systems on the two dimensional complex
sphere and two-dimensional complex euclidean space. The easiest way to see this is to use the
algebraic form of the various coordinate systems. We list here the separable coordinates, first
on the complex sphere. We do this in algebraic form and for a sphere of radiusR. Since the
coordinates are complex, there are now separable coordinate systems permitted in addition to
the real systems listed in section 3, [6,18,19]. In particular, systems{2}, {4}, {5}, (2) and (5)
are new (see below). Moreover, the parametersej are now complex numbers so the previous
ordering of theej is no longer appropriate.

5.1. The two-sphere

{1} Spherical coordinates:

s2
1 = R2 (u1− e0)(u2 − a0)

(e1− e0)(a1− a0)
s2
2 = R2 (u1− e0)(u2 − a1)

(e1− e0)(a0 − a1)
s2
3 = R2 (u1− e1)

(e0 − e1)
.

The infinitesimal distance is given by

ds2 = R2

[
− du2

1

4(u1− e0)(u1− e1)
+
(u1− e0)

4(e0 − e1)

du2
2

(u2 − a0)(u2 − a1)

]
and the diagram is

[ e0 | e1 ]
↓

[ a0 | a1 ]. (88)

{2} Horospherical coordinates:

(s1 + is2)
2 = R2 (u1− e0)(u2 − a0)

(e1− e0)
(s2

1 + s2
2) = R2 (u1− e0)

(e1− e0)

s2
3 = R2 (u1− e1)

(e0 − e1)

where the infinitesmal distance and diagram are given by

ds2 = R2

2

[
− du2

1

(u1− e1)(u1− e2)
+
(u1− e1)

(e1− e2)

du2
2

(u2 − a0)2

]
[ e0 | e1 ]

↓
[ a2

0 ]. (89)

{3} Elliptical coordinates:

s2
1 = R2 (u1− e0)(u2 − e0)

(e0 − e1)(e0 − e2)
s2
2 = R2 (u1− e1)(u2 − e1)

(e1− e0)(e1− e2)

s2
3 = R2 (u1− e2)(u2 − e2)

(e2 − e1)(e2 − e0)
.
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The infinitesimal distance and diagram are given by

ds2 = −1

4
R2(u1− u2)

[
du2

1

(u1− e0)(u1− e1)(u1− e2)
− du2

2

(u2 − e0)(u2 − e1)(u2 − e2)

]
[e0|e1|e2].

{4} Degenerate elliptical coordinates of type 1:

(x + iy)2 = R2 (u1− e0)(u2 − e0)

(e1− e0)

(x2 + y2) = −R2 ∂

∂e0

[
(u1− e0)(u2 − e0)

(e1− e0)

]
z2 = R2 (u1− e1)(u2 − e1)

(e0 − e1)2
.

The infinitesimal distance and diagram are given by

ds2 = −1

4
R2(u1− u2)

[
du2

1

(u1− e0)2(u1− e1)
− du2

1

(u1− e0)2(u1− e1)

]
[e2

0|e1].

{5} Degenerate elliptic coordinates of type 2:

(x + iy)2 = R2(u1− e0)(u2 − e0) 2(x + iy)z = −R2 ∂

∂e0
[(u1− e0)(u2 − e0)]

x2 + y2 + z2 = R2.

The infinitesimal distance and diagram are given by

ds2 = −1

4
R2(u1− u2)

[
du2

1

(u1− e0)3
− du2

2

(u2 − e0)3

]
[e3

0].

5.2. Euclidean two-space

For Euclidean two-space we have the following coordinate systems.

(1) Ellipsoidal coordinates:

x2 = c2 (v1− b0)(v2 − b0)

(b0 − b1)
y2 = c2 (v1− b1)(v2 − b1)

(b1− b0)

with infinitesimal distance given by

ds2 = −c
2

4
(v1− v2)

[
dv2

1

(v1− b0)(v1− b1)
− dv2

2

(v2 − b0)(v2 − b1)

]
and diagram〈b0|b1〉.

(2) Degenerate elliptic coordinates:

(x + iy)2 = c2(v1− e0)(v2 − e0) x2 + y2 = c2(2e0 − v1− v2)

with infinitesimal distance given by

ds2 = −c
2

4
(v1− v2)

[
dv2

1

(v1− e0)2
− dv2

2

(v2 − e0)2

]
and diagram〈e2

0〉.
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(3) Spherical coordinates:

x2 = (v1− e0)
(v2 − a0)

(a1− a0)
y2 = (v1− e0)

(v2 − a1)

(a0 − a1)

with infinitesimal distance and diagram given by

ds2 = 1

4

[
dv2

1

(v1− e0)
− (v1− e0)

dv2
2

(v2 − a0)(v2 − a1)

]
〈 e0 | e1 〉
↓

[ a0 | a1 ].

(90)

(4) Parabolic coordinates:

x2 = −c2(v1− e0)(v2 − e0) y = c

2
(v1 + v2)− ce0

with infinitesimal distance and diagram given by

ds2 = c2

4
(v1− v2)

[
dv2

1

(v1− e0)
− dv2

2

(v2 − e0)

]
(e0).

(5) Degenerate parabolic coordinates:

x = − c
8
(v1− v2)

2 +
c

4
(v1 + v2) y = i

[
− c

8
(v1− v2)

2 − c
4
(v1 + v2)

]
with infinitesimal distance and diagram given by

ds2 = c2

4
(v1− v2)(dv

2
1 − dv2

2) {φ}.
We work out a few cases. As a first example let us consider degenerate elliptic coordinates

of type 1. The Helmholtz equation for this coordinate system has the form

− 4

R2(u1− u2)

[
(u1− e0)

√
u1− e2∂u1(u1− e0)

√
u1− e1∂u1

− (u2 − e0)
√
u2 − e1∂u2(u2 − e0)

√
u2 − e1∂u2

]
9 = −`(` + 1)

R2
9.

The separable solutions are9 = ψ1(u1)ψ2(u2) with separable equations

4(u− e0)
√
u− e1∂u(u− e0)

√
u− e1∂uψ + (`(` + 1)u +µ)ψ = 0.

If we choose the new variablez = √(u− e2)/(u− e1) then the separation equation has the
form [

(1− z2)∂2
z − 2z∂z + ν(ν + 1)− (` + 1

2)
2

1− z2

]
ϕ = 0

where

ψ = (u− e0)
−1/4ϕ ν(ν + 1) = 1

4
+
µ− e0`(` + 1)

e0 − e1
.

The equation forϕ is clearly recognizable as having the solutionsϕ = P
`+ 1

2
ν (z) and

Q
`+ 1

2
ν (z), Legendre functions of the first and second kind [4]. From the point of view of

contractions we are interested in the limite1 → ∞. This corresponds to the diagrammatic
limit

lim
e1→∞

[e2
0|e1] → 〈e2

0〉.
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From the form of the infinitesmal distance we expect to obtain degenerate elliptic
coordinates in Euclidean space. Indeed if we considere1→ n2, `+ 1

2 → nχ for the separation
functionsψ then one can derive

0(1− nχ)P nχν

√u− n2

u− e0

→−i

√
πχ

2
(u− e0)

1/4H
(2)
ν+ 1

2

(
χ
√
u− e0

)
(nχ)ν+1

0(1 + ν + nχ)
Qnχ
ν

√u− n2

u− e0

→ √
πχ

2
e

iπ
4 (u− e0)

1
4Jν+ 1

2

(
χ
√
u− e0

)
asn→∞. HereH(2)

ρ (w) is a Hankel function of the second kind.
The second possible limit is whene0→∞. This corresponds to the diagrammatic limit

lim
e0→∞

[e2
0|e1] → (e1).

In this case we consider the equation forϕ and take the limits

e0→ n `→ nα ν(ν + 1)→−nα(1− 4χ) + n2α2.

In particular, if we chooseν such that

ν →−nα − 1 + 2χ + · · ·
then we obtain

2−nα0
(

1

4
+ χ − αn

)
P
nα+ 1

2
−nα−1+2χ...

(√
u− e1

u− n

)
→
√

2πe−
iπ
4 e−

1
2α(u−e1)

×
{

1

0( 3
4 − χ)

1F1

(
1

4
− χ, 1

2
, α(u− e1)

)

− 2iα
1
2 (u− e1)

1
2

0( 1
4 + χ)

1F1

(
3

4
− χ, 3

2
, α(u− e1)

)}

2−nαe−
3iπ
2 0

(
1

4
+ χ − nα

)
Q
nα+ 1

2
−nα−1+2χ...

(√
u− e1

u− n

)
→ π

1
2 e

iπ
2 (1−χ)e−

1
2α(u−e1)

×{2− 1
20( 1

4 + χ)1F1(
1
4 − χ, 1

2, α(u− e1))

−iα
1
2 (u− e1)

1
2 2

1
20( 3

4 + χ)1F1(
3
4 − χ, 3

2, α(u− e1)}
asn→∞.

There is one more interesting limit of this type. This corresponds to lettinge0 → ∞ in
degenerate elliptic coordinates of type 2, i.e.,

lim
e0→∞

[e3
0] → {φ}.

The Laplace–Beltrami eigenvalue equation in these coordinates is

4[(u1− e0)
3∂2
u1

+ 3(u1− e0)
2∂u1 − (u2 − e0)

3∂2
u2

+ 3(u2 − e0)
2∂u2]9

−`(` + 1)(u1− u2)9 = 0.

The corresponding separation equations have the form

[4(u− e0)
3∂2
u + 3(u− e0)

2∂u − `(` + 1)(u− e0) + 4λ]ψ(u) = 0.
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The solutions of this equation are readily calculated to be

ψ(u) = (u− e0)
−1/4C`+ 1

2

(
2

√
λ

r

)
whereCν(z) is a Bessel function [4]. Fore0 →∞ we would like to end up with degenerate
elliptic coordinates. The way to achieve this is to take

e0→ n2 `→ 2χn3 λ→−χ2n8− 1
2χn

5 +µn6.

Then we obtain the limit(
2χn3 +

1

2

)1
2

J2χn3+ 1
2

2

√
χ2n8 + 1

2χn
5− µn6

n2 − r

→ 1

π

[
2

3χ
(µ− χ2r)

] 1
2

×K 1
3

(
(µ− χ2r)

3
2

2
1
2χ2

)
the latter function being a solution of the separation equations.

6. Contractions between coordinate systems within a space

In the previous section we have examined the relations between the special functions obtained
by contracting from the complex two-dimensional sphere to the complex Euclidean plane.
Here we examine the consequences of taking limits of coordinate systemswithin each of the
manifoldsE2 andS2 and derive the relations between the corresponding special functions.

6.1. The complex two-sphere

(a) Consider the limit associated with the diagrammatic scheme

[e0|e1|e2] → [e2
0|e1]

or equivalentlye2 → e0. In this limiting case the various forms of Lamé polynomials have
as their limiting forms suitable Legendre polynomials. For the purposes of this case it is
convenient to consider the separation equations in degenerate ellipsoidal coordinates. Indeed,
if we choose the variablex = √(u− e2)/(e1− e2) then the separation equations have the
form [

(1− x2)∂2
x − 2x∂x + `(` + 1)− m2

1− x2

]
ϕ = 0

wherem2 = (µ + e1`(` + 1))/(e1 − e2). The solutions are Legendre functionsPm` (x) and
Qm
` (x). In order to take the limit we examine the case of a Lamé polynomial of the species

which can be written in the form5q

j=1(1− u/θj ) where theθj are the solutions of the Niven
equations (81). We write theθ1 equation in the form

[(θ1− e1)(θ1− e2) + (θ1− e1)(θ1− e0) + (θ1− e0)(θ1− e2)]
q∏
i=1

(θ1− θi)

+4(θ1− e0)(θ1− e1)(θ1− e2)[(θ1− θ3) . . . (θ1− θq) + · · ·] = 0.

We see that the equation is satisfied whene2 = e0 by the choiceθ1 = e0. From this observation
the limit e2→ e0 can be considered to be accompanied by the requirement thatσ(< q) of the
θj take the valuee0. The remainingθj then satisfy the equation

4σ + 2

θj − e0
+

1

θj − e1
+
∑
i 6=j

4

θj − θi = 0
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for i, j = σ + 1, . . . , q. We are at liberty to takee0 = 1 ande1 = 0. The appropriate limit in
this case is

5σ+2r
j=1

(
1− u

θj

)
→ (−1)σ+r22r (r − σ)!(r + σ)!

(2r + 2σ)!
P 2σ

2r (
√
u)

for r > σ . Other families of Laḿe polynomials have similar limits:

(u− 1)
1
25σ+2r+1

j=1

(
1− u

θj

)
→ (−1)σ22r+1 (r − σ)!(r + σ + 1)!

(2r + 2σ + 2)!
P 2σ+1

2r+1 (
√
u)

where

4σ + 4

θj − 1
+

1

θj
+
∑
i 6=j

4

θj − θi = 0

u
1
25σ+2r+1

j=1

(
1− u

θj

)
→ 22r+1 (r − σ)!(r + σ + 1)!

(2r + 2σ + 2)!
P 2σ

2r+1(
√
u)

where

4σ + 4

θj − 1
+

3

θj
+
∑
i 6=j

4

θj − θi = 0

and

u
1
2 (u− 1)

1
25σ+2r

j=1

(
1− u

θj

)
→ (−1)σ+r+122r (r − σ − 1)!(r + σ + 1)!

(2r + 2σ + 2)!
P 2σ+1

2r (
√
u)

where

4σ + 2

θj − 1
+

3

θj
+
∑
i 6=j

4

θj − θi = 0.

In all these cases it is understood thati, j = σ + 1, . . . , q whereq = σ + 2r or σ + 2r + 1 as
the case may be. We are, of course, assuming thatθ1, θ2, . . . , θσ are all equal to one.

(b) In this case let us consider the limit [e2
0|e1] → [e3

0], which is tantamount to
e1 → e0. From our previous work we know that the special functions associated with the

coordinate system [e2
0|e1] are Legendre functionsP

−`− 1
2

ν (
√
u−e1
u−e0

) andQ
−`− 1

2
ν (

√
u−e1
u−e0

) where

ν(ν + 1) = 1
4 + (µ− e0`(` + 1))/(e0 − e1). If we takee1 = e0 + ε2 the limits are

ε−`−
5
2P
−`− 1

2
µ

ε
− 1

2 + ε
4µ ···

√u− e0 − ε2

u− e0

→ (−1)`−
1
2 i

1
2 (`+

1
2 )µ−`−

5
20

(
` +

1

2

)
J`+ 1

2

(√
µ

u− e0

)

eiπ(`+ 1
2 )ε−`−

5
2Q
−`− 1

2
µ

ε
− 1

2 + ε
4µ ...

√u− e0 − ε2

u− e0

→
µ−`−

5
2

[
1

2
i−`−

1
20

(
1

2
− `

)
0

(
−1

2
+ `

)
J−`− 1

2

(√
µ

u− e0

)
+ 2

(
3

2
+ `

)
0

(
−`− 1

2

)
(−1)

1
2 (`+

1
2 )J`+ 1

2

(√
µ

u− e0

)]
.
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6.2. Two-dimensional Euclidean space

(a) Let us consider the diagram〈e0|e1〉 → 〈e2
0〉, i.e., a transformation from elliptical coordinates

in the plane to degenerate elliptical coordinates. In the case of elliptical coordinates the basic
separation equations have the form

4(v − e0)(v − e1)

[
∂2
v +

1

2

{
1

u− e0
+

1

u− e1

}
∂v

]
ϕ + (−ν2 + χ2c2(v − e0))ϕ = 0.

We can assume thate0 = 0 and takee1 = b. If we setv = b cosh2 θ then the separation
equation becomes

(∂2
θ − a + 2k2 cosh 2θ)8 = 0

which is a recognized form of Mathieu’s equation withk2 = χ2c2b/4,a = −ν2−χ2c2b/2. If
b→ 0 in the separation equation, the resulting solutions have the formCν(χcv

1/2). In order
to be consistent with our limiting procedures we introduce an algebraic notation for Mathieu
functions according to

CEν(v, q) = Ceν(θ, q) SEν(v, q) = Seν(θ, q)
whereq = k2 = 1

4χ
2c2b andv andθ are related as above. The corresponding limits that we

seek are then

(−1)2mA(2m)0

ce2m(0, q)ce2m(
π
2 , q)

CE2m(v, q)→ J2m(χcv
1/2)

(−1)m+1( 1
2χcb

1/2)A
(2m+1)
1

ce2m+1(0, q)ce′2m+1(
π
2 , q)

CE2m+1(v, q)→ J2m+1(χcv
1/2)

(−1)m( 1
2χcb

1/2)B
(2m+1)
1

se′2m+1(0, q)se2m+(
π
2 , q)

SE2m+1(v, q)→ J2m+1(χcv
1/2)

and

(−1)m+1 1
4χ

2c2bB
(2m+2)
2

se′2m+1(0, q)se
′
2m+1(

π
2 , q)

SE2m+2(v, q)→ J2m+2(χcv
1/2).

(b) Consider the limit corresponding to the diagram lime1→∞〈e0|e1〉 → (e0). Take the
Mathieu equation as previously withe0 = 0 ande1 = b, and the choicev = b sin2 θ . With
a = ν2 − 1

2χ
2c2b, q = 1

4χ
2c2b this equation assumes the form

(∂2
θ + a + 2q cosθ)8 = 0.

In order to obtain a suitable limit asb → ∞ we takeν2 = (2n + 1
2)b andχ2c2 = b

4. From
these choices we see that ifv is fixed thenθ is small and we have the relationθ = √v/b. The
corresponding limits can now be calculated:

ce2n
(√

v
b
,− b

16

)
ce2n(0,− b

16)
→ 0( 1

2 − n)
π1/22n

D2n(
√
v)

se2n+1
(√

v
b
,− b

16

)
se′2n+1(0,− b

16)
→−0(−

1
2 − n)

π1/22n+1
D2n+1(

√
v)

whereDν(z) is a parabolic cylinder function.
(c) Let us consider the limit corresponding to the diagram lime0→∞〈e2

0〉 → {φ}. The
separation equations for this coordinate system have the form

{4[(v − e0)
2∂2
v + (v − e0)∂v] − ν2 + c2χ2(v − e0)}ϕ = 0
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for v = v1, v2. In order to achieve this limit we can take

e1→ n2 c2→−n2 ν2→ χ2n4 + βn2.

The solutions for the functionϕ areCν(χ
√
v − e0). The corresponding solutions for the

limiting equation [4∂2
v + χ2v − β]ϕ = 0 are the Airy functionsAi[(β − χ2v)2−2/3χ−4/3] and

B i[(β − χ2v)2−2/3χ−4/3], [20]. The limiting formula relating these solutions is

Ai

[
β

(2χ2)

]
π(12χ2n2)

1
6

0( 1
3)

Jχn2+ β

2α +···
(
−iχn

√
v − n2

)
→ Ai

[
β − χ2v

(2α2)
2
3

]
asn→∞.

(d) The last limiting process that we achieve can be represented as lime0→∞(e0)→ {φ}.
The separation equations for this coordinate system have the form

{4[(v − e0)∂
2
v + 1

2∂v] + λ + c2χ2(v − e0)}ϕ = 0

for v = v1, v2. In order to achieve this limit we can take

e0→ n2 χ → σn λ→ µn2 + σ 2n4.

The solutions for the functionϕ areD− iλ
χ
− 1

2
(±2eiπ/4[χ(v − e0)]1/2). The corresponding

solutions for the limiting equation [4∂2
v + σ 2v + µ]ϕ = 0 are typically of the form

(σ 2v +µ)1/2C 1
3
( 2

3
(σ 2v+µ)

3
2

σ 2 ). Indeed the appropriate limit in this case is

2
1
2 i(σn3+ µ

σ
n)+ 5

2

3
4 − i

2(σn
3 + µ

σ
n)
D−i(σn3+ µ

σ
n)− 1

2
(±2e

iπ
4 [σn(v − n2)]

1
2 )→

(σ 2v +µ)
1
2 ei π6

σ31/2
H
(1)
1
3

(
2(σ 2v +µ)

3
2

3σ 2

)
asn→∞.
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