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Abstract. We investigate the consequences of contraction of the Lie algebras of the orthogonal
groups to the Lie algebras of the Euclidean groups in terms of separation of variables for Laplace—
Beltrami eigenvalue equations, and the solutions of these equations that arise through separation of
variables techniques, on tie-sphere and iv-dimensional Euclidean space. General ellipsoidal

and paraboloidal coordinates are included, not just the subgroup-type coordinates that have been
the concern of most investigations of contractions as applied to special functions. We pay special
attention to the cas®¥ = 2 where we show in detail, for example, how Lapolynomials contract

to periodic Mathieu functions. Our point of view emphasizes the characterization of separable
polynomial eigenfunctions in terms of the zeros of these eigenfunctions. We also consider all
possible separable coordinate systems on the complex two-sphere (which includes real hyperboloids
as special cases) and their contraction to flat space coordinates.

1. Introduction

It is well known that contractions of Lie groups and algebras can be used to obtain relations
between many of the classical special functions. The most familiar example is perhaps the
contraction of the rotation groupO (3) to the Euclidean groug (2), [1]. In this example

the generators of the Lie algebra$® (3), which we denote by ,, satisfy the commutation
relations

[Li, L;] = €jiLy 1)

wheree; ;. is the skew symmetric tensor and summation is on the ikdexAn especially

clear and comprehensive study of this contraction can be found in the books by Talman and
Gilmore [2,3]. Considerthe matrix element (with respect to tlie {3-dimensional irreducible
representation) of a group element$ (3) written in Euler angles a®‘(«, 8, ¥)un, and

changes — B/c wherec is large and fixed, i.eD(a, B/c, ¥)mn = i""€™d’, (B/c)e 7.

Now consider the Lie algebra induced using these matrix elements as a basis and the parameters
a, B, v, in which case the basis elements for the Lie algebrd.are L;/c, L), = L,/c and

L’ = L3. The commutation relations for these new elements are

1
[L..L]=>L,  [L,.L1=L, [L.L]=L, @)
) o2 )
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In the limit asc — oo these commutators are the same as those of the Lie algebra of the
Euclidean group:

[P, P)] =0 (M, P] = P> M, P;] = —Py. )

In this limit L’ is identified withM, L with — P, andL/y with P;. In order for the algebraic
relations to have a finite limit we require that the indéxwvhich labels the irreducible
representation behaves likeasc becomes large. Specifically we require tliat ¢. The
matrices representing, = L +iL) andL’ = L —iL’ have elements given by

(L)n = —i—[w —n)(+n+D]Y28, 1
C

(L Yo = —g[(z )€ —n+D]Y2S, 1.

Then in the limit a¥ — oo the matrix elements of, andL’_ assume the form of the
matrix elements oP; andP_ in a representation df (2) labelled byy. We can take the same
limit in the group representations. In this limit one obtains

dy (%) — """ Ty (XB) 4)

asc — oo, whereJ,, (x) is a Bessel function [4].

This result is a very special case of the limit procedure for solutions of Laplace—Beltrami
eigenvalue equations on tié-sphere as the symmetry group of tNesphere, SO(N + 1),
contracts to the symmetry group(N) of EuclideanN-space. The first investigation of the
connection between contractions of the Lie algebras o(3) and 0(2,1) to e(2) and separation
of variables was undertaken in [5, 6]. Our objective here is to establish, in detail, just how
the contraction procedure works for the various separable coordinates on the two-dimensional
sphere if the Lie algebra &fO(3) is contracted to that of (2) and, in general terms, how
the procedure works for th¥-sphere. The analysis of contractions in [2], and in the recent
literature, e.g., [7], emphasizes subgroup coordinates. Here we treat the most general separable
systems.

2. Separable coordinates inV dimensions

We review the construction of separable coordinates for Laplace—Beltrami eigenvalue equations
on theN-sphere an&v-dimensional Euclidean space, [8, 9], and show how they are related by
contractions.

Elliptic coordinates on the sphere.This is the basic separable coordinate system orivthe

sphere. HereX, ..., Xy are Cartesian coordinates, ..., ey are constantsand, ..., uy
are elliptic coordinates. The coordinates are related by
N 2 N N
X u—u
y A etz s e ®
o4 e [lizou—ep) k=0

whereu is a parameter and

eo<uUrp<el<up<---<eéeny-1<uny<ey.
N
_ Hk:l(e(_”k)

X2
‘ l_[j#(el —ej)

j.£=0,...,N. (6)
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The metric on the sphere is

ds? = Z dx2 = Z M du. @)
l_[g ok — ep)
The action of the Lie algebra ¢fO (N + 1) on the sphere is given by the operators
Ly = Xidy, — X;0x, k. j=01..., N. (8)
The commutation relations are
[Lij, Lys] = 8jqLis — SkgLjs — 8jsLig +SisL iy k,j,q,s=01,...,N. )

The Laplace—Beltrami eigenvalue equation is
VY = 0w Z{VEZLl?j M=o0(c+N—1) (10)

wherei, j = 0,1,..., N. A separable solutiov = ]_[,i\'=l Y (ur) is characterized by the
eigenvalue equations

VY = 3w ' =57 (L} k=1,...,N (11)
i>]
wheresS; (e) are thekth-order elementary symmetric polynomialsegf. . . ey, or
Y e 1<k<N+1
i1>0p>-->I)

Si(e) = 1 k=0 (12)
0 k>N+1

and S,ij(e) are defined as thekth-order symmetric polynomials ofeg,...e;_1,

€j+l, .- -€i-1,€+1,...€N.
Here,

[z). 71 =0. (13)

The separable solutions satisfy the separation equations

d d
_4\/7?kd_uk< pkﬂ) [Z“”k) } k=1....N (14)

where

N
Pe= [ Jux — ey
q=0

Elliptic coordinates in Euclidean space.This is the fundamental separable systemvin

dimensional Euclidean space. Hetg,. .., xy_; are Cartesian coordinates, ..., ey_1 are
constants and,, ..., uy are elliptic coordinates. The coordinates are related by
N-1 2
X u —
Z k _ C2 — 2 l_[k 1( ) (15)
k=0 ¥ ~ ¢k 1_[] o — ej)
where

epo<ur<eéer<ur<---<éeny-1<UuUn
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and
N
o el zuw gy (16)
) Hj#g(el - ej)
The metric is
Uy — U
ds2 = Z dx? Z M due?. (17)

—1 1_[4 -0 (”k —ep)
The action of the Lie algebra di’(N) on Euclidean space is given by the operators

Lij = X30x, — X0y, Pj =0, (18)
wherek, j =0,1,..., N — 1. The commutation relations are

[Lij, Lgs] =8jqLis — ugLjs — 8jsLig + ks L jq (19)

[Pj, Lys] =8;4Ps — 8P, k,j,q,s=01...,N—-1 (20)

The Laplace—Beltrami eigenvalue equation is
1IN = — W WY =) P? u1=k%>0. (21)

A separable solutiod = 1"[,1:’:l Y (ur) is characterized by the eigenvalue equations

1IN = — W k=1,...,N (22)
where
N-1
1IN =) S+ Y s (e) PP ¢=2,...,N (23)
i>j i=0
and
[T} 171 =0. (24)

The separable solutions satisfy the separation equations

d d
—4\/§kd—uk< Wk) [Zuj(uk) }/szo k=1...,N (25)

where

N-1
Q= H(“k - eq)~
q=0

Parabolic coordinates in Euclidean spaceThis is a second fundamental separable system
in N-dimensional Euclidean space, though as we shall show, it can be obtained by contraction
from elliptic coordinates in Euclidean space. Heyg,..., yy_1 are Cartesian coordinates,

e1,...,ey_1 are constants andy, ..., uy are parabolic coordinates. The coordinates are
related by
N-1 2
—2cyo— Pty e ZM (26)
= 4~ & H 1(”_61)
¢ N N-1
Yo = 5( - uj+ ek) (27)
j=1 k=1
N
i (uj—e)
y?:—czml—j ik=1,.. N—1 j=1,...,.N  (28)
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where
Ul <el1<up<ep<-:---<eéenNy-1<UuUpn.
The metric is
N-1 2 N H (u —u )
C Kk \Um k
ds2 =) dyZ=—Y —F T du. (29)
(=0 4 =1 [li=1 (e —eo)

The action ofE (N) is given by (18), withx; replaced everywhere by.
The Laplace—Beltrami eigenvalue equation is

N-1
2TV = —py ¥ 2T =) P? p1=k?>0. (30)
=0

A separable solutio = ]_[,]{V:1 Y (ur) is characterized by the eigenvalue equations
2TV = —p W k=1,...,N (31)
where
N N-1 N-1
2T == 3 SENOLE + Y SR+ Y SLyNP, Lol
i>j>0 i=1 j=1
+c?Sy_1(e) P2 =2,...,N (32)

and{A, B}. = AB + BA. The sumsS;(e) are defined as before, except tisdt’ (¢) = 0,
eo = 0. We have

7). 27 =0. (33)
The separable solutions satisfy the separation equations
d dysy al N
4V He— (VHio— ) + | D i@ |y =0 k=1,...,N (34)
duk duk =1
where
N-1
Hi = H(uk —ey).
g=1

Elliptic coordinates on sphere> Elliptic coordinates in Euclidean space.We describe in
detail how one obtains elliptic coordinates in Euclidean space from elliptic coordinates on the
sphere, via contraction. Let, as usual, the Cartesian coordinates on the sphere be denoted

N
(Xo..... Xn) doxi=1
=0
and set the inhomogeneous coordinates [5]
X2
2 2 .
szch—é j=0,...,N—-1 (35)
N

LetR = ey — +oo. ThenXy — 1 and
2 Hiivzl(ej — i)

HZ;&J‘ (ej —ee)
2

ds,%;=—cz lim  Rds? (ew). (37)

R=ey—

x2(R) — — j,€=0,...,N-1 (36)
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This amounts to letting the radius= +/R of the N-sphere and a focus go to. (Similarly,
can take the limiR = —eg — +oo with Xo — 1 to get Euclidean elliptic coordinatés,, u’j}
Wlth€2 = —eN_g,M/j = —MN_J'.;.]_,E =0,...,N— 1andj =1, ,N)
Making the change of coordinates (35), we see that the Lie algebra action transforms as
follows:

LNS = XNax X aXN = C\/_a)cY + Z-xj X (38)
Lis = Xidx, — X, 0x, = X0y, — xsaxk s.k=0,...,N -1 (39)
Now we setP! = limz_ . ﬁﬁLM, L, = Ly and verify that, in the limit, the primed

operators and their commutation relations agree with (18)—(20) for the actidi/gj.
Furthermore, one can easily verify that

1 1
7y = Jlim ZRlezlz{V 1) = Jlim IN WY k=2,....N. (40)

Thus the operators defining separatlon in elllptlc coordinates on the sphere go in the limit to
the operators defining separation in elliptic coordinates on Euclidean space.

Now supposel is a separable solution on the sphere, i.e., it satisfies eigenvalue equations
(11). Then if we consider a one-parameter fan#yR) of solutions such that; ~ c?Ru1,
A~ Rug, k=2,...,N,and¥V' = limg_,, . Y (R) exists and is non-zero, it follows that
Y’ satisfies the eigenvalue equations (22) for separation in elliptic coordinates on Euclidean
space.

Elliptic coordinates in Euclidean space Parabolic coordinates. Now we describe how to
obtain parabolic coordinates in Euclidean space from elliptic coordinates in Euclidean space,
via contraction.

Set
e
CZ(R—&)ZZ—R ZM (41)
¢ Hk 1(60_@k)
— Re 21_[/< (U —ej) (42)
1_[4#](6[ e;)
j=1,...,N-1 k=1,...,N ¢=0,...,N—-1
i.e., set
yo=cR—x/Ex0 yk=ﬁxk k=1 ...,N-1 (43)

where thex; are Cartesian coordinates (18), related to elliptic coordinates via (16).
Let R = —eg — +oo. Then, in the limit, (41) and (42) yield, respectively,

N N-1
—2cyp = c2<2uk — Z ej) (44)

yg _ an 1 (g — )
! l_[k;éj (ex — e/)
dsl% = lim RdsE (eg). (46)

R=—eg—00

Furthermore, from (43) we have

(45)

Lyx = x¢0x, — Xx0x, = Y0y, — Yk 0y,
Lok = x00y, — Xk0xy = — Y00y, T Yi0y, + ¢RIy,
Py =0y, = —VR,, P = 8, = VRd,, k,=1,...,N -1
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Now we define new operators by

Ly =Lu Ly = R:EEP_)OO(LOk — ¢V RP)
, . Py , . Py (47)

P,= lm — Pp=— Im —

R=—ep—00 /R R=—ep—00 ﬁ

and see that in the limit these operators satisfy (18).
Also, one can easily verify that

1TV = lim EI,?’ =7 k=1...,N. (48)
R=—eg—00 R

Thus the operators defining separation in elliptic coordinates on Euclidean space go in the limit
to the operators defining separation in parabolic coordinates on Euclidean space.

Now supposel is a separable solution in Euclidean elliptic coordinates, i.e., it satisfies
eigenvalue equations (22). Then if we consider a one-parameter famRy of solutions
such thatu, ~ Rpox, k = 1,..., N, and¥V’ = limg__,,. V(R) exists and is non-zero, it
follows thatW’ satisfies the eigenvalue equations (31) for separation in parabolic coordinates
on Euclidean space.

3. Hybrid separable coordinate systems

A complete description of separable coordinate systems ottephere and on Euclidean
N-space, and a graphical method for constructing these systems can be found in [8,9]. Here
we mention some of the main ideas.

The basic elliptic coordinate system on tNesphere is denoted

[eolex] - - - len]. (49)

All separable coordinate systems on tNesphere can be obtained by nesting these basic
coordinates for thé-spheres fok < N. For example we can obtain a separable coordinate
system on theV-sphere by starting with a basic elliptic coordinate system onshe- k)-
sphere and embedding in itesphere. Thé-sphere Cartesian coordinatés, ..., Vi) canbe
attached to any one of tié—k+1 Cartesian coordinaté¥y, . . ., Uy_;) ofthe(N —k)-sphere.

Let us attach it to the first coordinate. Then we have

k
(Xo, ..., Xy) = (UoVo, ..., UoVi, Us, ..., Un—1) Y vi=1 (50)
=0
V2 — Hf=1(vi —fo U2 = HzN=_1k(“t — €o) (51)
¢ ni;eg(fi - fo 0 Hi;eo(gi — ep)
N—k k
ds? = ds? + U2ds2 dsf = > dU? dss =) dv2 (52)
h=0 =0

The resulting system is denoted graphically by

[ e | e | - | evsk ]

[ oI -1 fi 1 . (53)
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Here is another possibility:

[ eo | e | - | evk—t-m ]
\: N
[ fo Il fi | - | fil [ 80 | g ]
J
[ ho | - | hw ] (54)

Each separable system can be obtained in this way via embeddings. The graph is a tree whose
nodes are basic elliptic coordinate systems.

For Euclidean space the results are a bit more complicated. The basic ellipsoidal coordinate
system onV-space is denoted

(eolea] - - - len—1) (55)
and the parabolic coordinate system is
(e1] -~ - len-1)- (56)

The graphs need no longer be trees; they can have several connected components. Each
connected component is a tree with a root node that is either of the form (55) or (56). Just as
above, spheres (49) can be embedded in the root coordinates or to each other. Here are two
examples:

(1) Cartesian coordinates in two-space:

(eo) (ep) (57)
and
(2) oblate spheroidal coordinates in three-space.
(e | e )
\
[ a1 | a2 ] (58)

Procedure for contractions from general separable coordinates omvttsphere (labelled by
a tree) to ellipsoidal-type coordinates in EuclideAnspace.

(1) Go to the root of the tree:
[eolea] - - - lex—a].
(2) Erase either the left-hand square or the right-hand square in-8gsiare block. The
resulting(k — 1)-block becomes a diamond block, say
(eal - - - lex-1)
denoting ellipsoidal coordinates in Euclidean space.
(3a) If the erased square is not connected to some lower block, the process ends.

(3b) If the erased square is connected to a lower block, erase the edge, proceed to the lower
block and repeat step (2).

When the process ends we have a coordinate system in Euclidean space with one more
component than the number of edges erased.

For example, one result of contracting (53), in particular letfihg: ey — o0, is to
obtain the Euclideatv-space coordinate system

( e | e | - | en—k-1 )

[ fo I - | fi 1 (59)
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We treat another example in detail, a coordinate system on the six-sphere:

[ e | e | e ]
v N\
[ ol AL 2| 1 [ 0 | 11] (60)

The presciption for writing down the invariant operators corresponding to embedded coordinate
systems can be found in [8,9]. The results in this case are

=Y L} 0<i, j<6

i>j

3 3
Tr = eo(Lgy+ LEg) +ex Z Lg +e2 Z(Li' +L3)
i=0 =0

3= Y L 0<k £<3 (61)
k>{
Iy = L3 (f2+ f3) + La(fo+ fa) + LE(fi+ f2) + Ly(fo+ f2) + Li5(fo+ f2)
+L3,(fo+ f1)
Ts = L3, fafs+ Lesfifo+ L3, fof3+ L2sfofo + Lasfofu
T = L.

In the limit asR = e, — oo with eigenvalues.; = Ru;, j = 1,2 andiy = i, 3< k < 6,
we get the coordinate system in Euclidean six-space

( e | e )
v N
[ /ool A1 21 1 [ 0] 1] (62)

with invariant operators

3 3 (63)
Ty = Peo(P; + P2 +cPery PP+ > (L% + L)
i=0 i=0

4. The real two-sphere

To see in detail how this contraction works on the two-sphere, and its relation to special
functions, we can specialize the Bessel function example to the casemhehso that the
limit (4) has the form [1, 5]

P (cos(%)) — i"J,(xB)

to within a suitable normalization, wherg,, (x) is an associated Legendre polynomial.
(For generah one needs to employ the Laplace—Beltrami operator on the three-sphere [7].)
Spherical coordinates on the two-sphere are given by

(1 — eo)(uz — a1)

(e1 — eo)(ao — a1) (64)

2 (u1 —eg)(uz — ap)

E (e1 — eo)(a1 — ao)
(w1 —eq)

"~ (eo—e1)

55 =

wWN

N
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whereeg < u; < e, andag < uz < a;. Heres? +s5 +s2 = 1. This can be
recognized as the rational form of the normal spherical coordinates. Indeed if we were to
make transformations of the form — «u + 8 we could define new variablag, v, and
effectively take O< v; < 1,0 < vp < 1. The variables, v, could then be identified as

v1 = sif6 andv, = cog ¢, the normal spherical coordinates. The way we have defined
spherical coordinates in this case corresponds to the choice of graph:

[ e | e ]
\:
[ a0 | a1 1] (65)

The corresponding Laplace—Beltrami eigenvalue equation has the form

, 1( 2 1
Auy —eg)(uy —ey) [0, + = + Ous
1 2 ujy — eg uis — e

ep— ¢
+0 1

(up — ap)(uz — ay)
Ui —eo

1 1 1
x |92 + 2 + 3y, | € +1) | W =0.
2 2 Uz — dap uz —daa

If we now make the requirement that ~ ¢?/x? as¢ — oo then the corresponding equation
is

1 1
|:4(M1 — ep) |:351 + 3141} + (up — ap)(uz — ay)
ui — €p uip — €o

1 1 1
X [aj += ( + ) auz} + xz] v =0. (66)
2 2 uz — ap U — daa
In both case® can be written a® A (u») whereA (u,) satisfies
1 1 1
[wz—%xW—aoQﬁ+—< + ))mJAm»=—wﬂAm». (67)
2 2 Uz — ap uz —aa

In the case of coordinates on the sphere the resulting separation equatidisfor

[40!1 —eg)(u1 — e1) [351 + 1 ( 2 + 1 ) 3u1] _fnTa, +L0(L+ 1)} ®=0.

2\u1—ey up—e; Uy — eg
(68)
In the limit ase; &~ £2/x? and¢ — oo the corresponding equation becomes
m2
[«m—mﬂ%+ mi— +x1¢=0 (69)
uil — €p uiy — e€p

This is a form of Bessel's equation [4]. To establish the basic mechanism for separation
we examine the equation fab. If we consider the separation equation and wrte=
(11 — e0)™? A (u1) then the equation foa is
{4(uy — eo)(u1 — €1)07, + [ua(6 + 4m) — 20 — ey (m + 1)]d,,—(£ — m)(L +m + D}A = 0.
(70)
If we look for a polynomial solution fors of the formA = I17_, (u1 — 6;,) we see that we
have a solution if and only if the zer@ég satisfy the fundamental relation [10, 11]
2m+1) 1 4
+ +
0 — 6

=0. (71)
9j — €Q 9j — ée1 Py
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This is the familiar form of the equations determining the zeros of the generalized Legendre
polynomials. In order to determine how the polynomial behaveg, ag — oo we write
instead ofA, A’ = 1‘[3’.:1[1 — (u1 — eg)/(0; — eg)]. We can deduce two important relations
ag:o_ngst the®;. We use the notatioip = Y"%_, (05 —e0) ™", S1 = >-f_;(6; — e1) " and
obtain

2m+1)Sp+S1=0
2(m + DegSo+e1S1+3(¢ —m)(L+m+1) =0

where we have used the fact tigat (¢ —m)/2. Indeed, the first relation follows by summing
equations (71) ory, and the second follows by multiplying each equationéhyand then
summing onj. As¢ — oo we see that these relations imply
4 2 [4
N . 1 X A . 1 1
So = lim = S1= lim =—Zx2
t=o0 i O —eg 4m+1) eemjgl@f—el 2

(Note that thed, themselves depend dn) Using the identities satisfied by the zeros of the
polynomialsA’ we can further deduce that

1 1

q
2 1 S1— S 2
D Yy A R DY T

in addition to the identity

4 1 1
=y ————+ .
° f; O — e0)? ; (6 — €0) (05 — o)

From these two requirements we conclude that as oo
4

1 X
;; (6, — )6y —e0)  16(m+1y(m +2)’

Consequently if we evaluate the successive equations in this way we obtain, formally,

2 x* x* 2
= (U1 —eo)? (1— m(“l—eo)"‘m(w—eo) —)
which can be recognised [4] as the first few terms of the expansion of
2"T (m + 1) J,y (x+/u1 — eo) .

Note that for a polynomial separated solution of orglewith zeros ; we have expansions
aboute,, s = 0, 1, given by

q
Aw) =] <1— R ) Zc (i —e5)’ (72)

f=1

(-1 1 .
co=1 ¢j=—; Z j=12...,q. (73)
] R (9,‘1 —e5) - (9,-/_ —ey)
As g — oo we pass through a family of polynomials and obt&in= lim,_,.. c;(g), where
C; is the coefficient ofu — e,)/ in the separated (non-polynomial) solution corresponding to
the contracted coordinates. Thus these coefficients can be evaluated in terms of limits of the
sums (73) of terms involving the zeros of the polynomial solutions.
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Letny, ny, ..., ng be a partition of, i.e.,
ni=npy>=--->2n; >0 ni+---+n=n.

One can also denote this partition by2% . . . n"» wherert; + - - - + ¢, = k andy; is the number

of occurrences of the integein the partition ofz. We introduce the notation
1

(0, — e ... (6, —e)™

(ne,....,mle) ={1" .. .n"}=n=
P

Here the indiceg in a given term take values from 140 except that the indices in a term are
pairwise distinct. The number of terms in the sumlig(q — k)!. We shall show that all such
sums, hence their limits, can be evaluated directly from (71).

First we note that the sums multiply in a simple fashion:

(74)

{ne,...,n}-{mq, ..., my}=n-m= Z Apy,..ppeAP1s - Prre} (75)

where theu are integers> 0, andpa, ..., pr+¢ IS a partion ofn + m. (For convenience, we
adopt the conventiofny, ..., ng, 0} = {ny, ..., ni}.)
The following are the rules to find the nonzero terms on the right-hand side of (75).

(1) Pick anyh-element subset,,, ..., n,, (s1 < s2 < --- < s;,) of n and anyh-element
subsein,,, ..., m,, (in any order) ofm. Then the sum

/ ’
{nxl +mr1» ng, +mr27 ceey N, +mrha n,m }

with terms properly reordered, will be included once on the right-hand side of (75). Here
n’'isnwithn,,, ..., n, deleted anan’ism withm,, ..., m,, deleted. Thisis a partition
of n + m which hash + (n — h) + (m — h) = n + m — h nonzero terms.

(2) Repeat the preceding step for alelement subsets af and m, and for allh =
0,1,...,min(k, £). The sum of all partitions of + m so constructed is the right-hand
side of (75).

Some examples are (all sums depend on a cormapjon
(1,1} {11, 1) = {17} - {1°) = 6(2%, 1} + 6{2, 1°} + {1}
{2}- {17 =23 1} +{2, 1% {2- {31 =1{5}+{3,2)
(2.1} {17} = 2{3, 2} + 2{3, 1%} + 2(2°, 1} + {2, 1%},
We show how, in principle, one can compute all the sutts). To be definite we take
s = 0, but a slight modification of the argument works foe= 1. First, multiplying each

term of (71) by(6; — eo) "**, summing onj and expanding in partial fractions, we obtain the
identity:

n—1

2(m + 1){n}(e0) — ) _

j=1

(n—JjYeo) , {Lie)

(e1—eg))  (e1—ep)" L

[5]
2 1
—4( > ln — £, 0)(eo) - 5{% g}(eo)> =0 (76)

=1

where{3, 5}(eo) = 0 if n is odd. We are giverfl}(eg) = So and{1}(e1) = Si. It follows
from (76) that

{n —k}-{k} = {n} +{n — k, k} (77)
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and by a simple induction argument that we can compute all umsand{n1, no}. Now
suppose we knojhy, ..., ni}forallny > --- > n >0andk =1,2,...,k — 1. Thenwe
can use the fact that

{n1, ...,k } - {ng+1} = {na, ..., nge1} + partitions with< k nonzero terms

to compute allny, ..., n} such thate; > ny > --- > ng, > 0. Thus we can computal
{I’ll, ey nk}.

We now perform the analogous limiting process for the case of ellipsoidal coordinates on
the sphere. We will initially treat these coordinates on Ahsphere, and then specialize to
the two-sphere to take the limit. These coordinates have the form (6). We want to compute
polynomial separable solutions of ordgiof the Laplace—Beltrami eigenvalue equation and
then letg — oco. A key observation is the identity (5). Based on this, we look for solutions of
the form

N X2

V= 1—[1;:1(2 0

7) ~ njzlnfv(u,- —0)). (78)
k=0

If we drop the constraint tha}_, X? = 1 then the polynomials (78) are homogeneous of
order 2 in the coordinatesy,. By passing to polar coordinates, it is easy to show that
the unconstrained function (78) is harmonic, i.e., it satisfies the Euclidean space Laplace
equation [10]

Aya¥ =0  Ays= Z 92 (79)

if and only if the function (78), constramed to tiesphere satisfies the eigenvalue equation
Ay = -2q9(2q +N — v (80)

whereA y is the Laplace—Beltrami operator (10) on thiesphere. Substituting the polynomial
(78) into (79), we see that this equation is satisfied if and only if [10, 11]

N
1 4
> +> =0 (81)
0 —e 0, —6k

s=0 7J

wherej, k take values from 1 tg. Moreover, substituting the second equation of (78) into the
separation equations (14) we see that the separation constants and the zeros of the polynomials
are related by

1 Zé\;l)‘@eé\,_l
{1}(es) = 2—1'[;,# P— (82)

whereir; = 2g(2g + N — 1).
By computing the inverse matrix to the Vandermonde matrix [12, p 36], we find the identity
(i,t=0,...,N)

t+N
” B ( 1) Z Hégés(es ) :

This allows us to invert relations (82):

N
e = 2(=DN Y (1)) > e, ... ¢, ¢=1,...,N
s=0

N fl,,..,ig#;il,...,it;éx (83)
0= {1}e,).
s=0
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Exactly as in our preceding example, we can define siims . ., n;}(e;) and a minor
alteration of the argument given there shows that all such sums can be evaluated explicitly
from (81) and (82). Moreover, #y — oo according to the prescription following (40), the
limits of all these sums exist and are finite.

Now we returntothe casé = 2. See also [5]. Onthe two-sphere the separation equations
have the form [13, 14]

1 1 1 1

[—4(ui—eo)(ui—e1)<ui—ez> [af.+—( + + )a}
o 2\uj—e u;j—er u;—es

+(+ Du; + )\2:| Yi(u;) =0

wherei = 1,2 and¥ = vy (u1)¥o(u>). If we now proceed to the limit, ~ ¢?/x? ast — oo
with the additional provision that, ~ —72¢?/x?, the separation equations become
[4<ui — eo)(u; — e1) [a"‘ +2 ( L 2 ) a] + x2u; — rz} @i(u;)=0.  (84)
2 \u;—ey u;i—e; '
From previous work we know that in the case of the sphere the corresponding separable
solutions are Lam polynomials and in the case of Euclidean space, Mathieu functions [4, 15].
We now examine the contraction process as outlined for these coordinate systems. We have

L€+ 1) = 2[(e1+e2)So + (eg + €2) S1 + (eg + €1)57]

Ao = —2[616250 +egeaSy + 606152] (85)
0=Sp+S51+S5>
whereS; = >1_, e,Ee,-- As ¢ — oo these three relations imply
2 2 2
o X . o X o ¢ T
So = — = So+ S ="=— So+egS1 = —.
2 5 o+ 51 5 €150 + epd1 >
Thus
~§0= 1 eOXZ_T_Z §1= 1 e1x® _T_Z )
eg— e 2 2 e1 — eg 2 2

If we now look at the limiting behaviour of the polynomials = l‘ljzl(l —u1/0;) as
¢ — o0, just as we did previously, we have formally, takisg= 0, that
A1 72 L1
= — —U —
2e1 T 122
Note that (86) is obtained by assuming that the limit of an unbounded sum of monomials is
equal to the infinite sum of the limits of the individual monomials, and this is by no means
obvious. We will give a rigorous proof at the end of this section.
In order to identify this solution we note that with the choice of variablgs=
1,u = si?0,q = x/2 anda = x2/2 — 2 the separation equation fartakes the form
(82 +a — 2q cos D) = 0 which is the standard form of Mathieu’s equation. With appropriate
choice ofr the series developed above tf will be one of the following (where we use the
notation of McLachlan [16]):
1 {0,0,0

[t2(2+2) + 2X2e1]ui +oe (86)

Céomn (9, Q)

u
n. (1- — LX) =
’=1< 9~) = cean(it, ) cez, (0, q)

J
(2 {1,0,0}
sexn+1(0, q)

1/2 2m+1 u _ _
u I 1—— ) — se U, ) = ———— a=">b
j=1 ( 91> 2m+1( X) se,2m+l(0’ q) 2m+1
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3 {0,1,0)
(1 — wyl2m2et (1_ i) 5 ceom (i, x) = ceanr1(6, ) a = a1
i= 0; cezn+1(0, q)
@ {1,1,0
m+2(0, q)
121 _ p¥2p2m2 (1 u , _ % —b .
u ( M) j=1 ( 9] — Sey, +2(M, X) s62m+2(0’ q) a 2m+2

These are the only cases that we need consider as we can readily s¢q,tqat0} ~
1/2
(1/e3' )€1, €2, €3} @asez — oo.
The formal limit (86) needs rigorous justification. We sketch some of the details involved
in recovering a periodic Mathieu function from the limits of the LapolynomialsA, (u1).
The operatoegllzz, used in the limiting procedure to caIcuIdi’é, takes the form

142 _s2 ,€,2 L €0,
e Iy =Lyt —Lgp+ —L5,
€2 €2

and from the well known action of the operatdrs, Lo,, L12 defining the (2+1)-dimensional
irreducible representatioh, of SO (3) [2] and Geggorin's theorem [12] we can verify that,
as¢ grows without bound, each of the eigenvalug$i, of ¢, 12 lies in one of the intervals

2
)2+4k2+x—(e0+e1) g(el—eo)xz k=01,....
(] 2
Further, fork and ¢ suitably large so that the-interval does not overlap any of the other
intervals, there is exactly one eigenvabyein thek-interval for fixedk, £. Since this interval
is compact, there is a sequence of eigenvalyes?/¢2, £ = 2q, such thak, , x2/¢? — —12
asq — oo, with —72 in the k-interval. We will show that-t2 is a discrete eigenvalue
corresponding to the Mathieu equation.

With a very similar argument to that in (74)—(77) we can determine all of the sums (74).
In particular, these all have finite limits fep = ¢2/x? ast = 2g — oo. Since the sums
{2}, (ey) are finite and have finite limits as— oo for s = 0, 1, 2, it follows that there exists
a positive constant such thaté,(q) — et <kfors =0,1,p=12,...,9 and allg.
Since{2}, (eo) is uniformly bounded iry, there must be a strict upper bound on the number
of zerosd, (¢) in the intervaleg < 6,(q) < e1, uniform for allg. Call this upper bound.

Each polynomial in the sequengg (11),g = 0,1, ..., can be written in the form
A, () lP—"[ (1 Ui —ep ) ﬁ ( Ui —eo ) ADA@ 87)
Ui) = — | = _
q i 0,(q) — eo =Pyl 0,(q) —eo Py tq—P,
where

eo < 0,(q) <ex p=1...,PF

e1 < 0,(q) < exq) p=P,+1...,q
and P, < P. Note that the polynomiah® (u,) takes the value 1 faz; = eg and that this
polynomial is strictly positive and monotone decreasing in the integval u; < e;. Itfollows

that the polynomial$A, (11)} are uniformly bounded oreg, e1] for all . Furthermore, since
{j}q(e0), {j}4(e1) are uniformly bounded foj = 1, 2 it follows easily that the derivatives

%Aq (u1),k = 1, 2, 3are also uniformly bounded in absolute value. Thus each of the families

{Ag}, {AL}, {A7} is equicontinuous and uniformly bounded. Using Awvetheorem, [17],
we can choose a subsequefitg} of {A,} such that

Ag(u1) — @(u1) Ay (uy) — @' (u) Ay (ur) — ¢"(u1)
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uniformly on [eg, e1] as¢’ — oo. Hence,¢ satisfies (84) and, ié; = 0, the expansion
(86). Sincey is bounded ondp, e1] it is a periodic Mathieu function and 2 is in the point
spectrum.

5. The complex two-sphere and plane

A main thrust of this paper is to demonstrate how the notion of contraction based on the classical
examples extends to the various separable coordinate systems on the two dimensional complex
sphere and two-dimensional complex euclidean space. The easiest way to see this is to use the
algebraic form of the various coordinate systems. We list here the separable coordinates, first
on the complex sphere. We do this in algebraic form and for a sphere of rRdiigice the
coordinates are complex, there are now separable coordinate systems permitted in addition to
the real systems listed in section 3, [6,18,19]. In particular, sys{@ng4}, {5}, (2) and (5)

are new (see below). Moreover, the parameterare now complex numbers so the previous
ordering of thee; is no longer appropriate.

5.1. The two-sphere

{1} Spherical coordinates:

2 2 (1 — eo)(uz — ao) 2 o (1 —eo)(uz —ay) 2 o (11 —e1)
s1=R 5= s5=R"——.
(e1 — eo)(a1 — ap) (e1 — eo)(ap — ay) (eo —e1)
The infinitesimal distance is given by
ds? — R? |:_ du% . (u1 — eo) du% i|
4(uy —eo)(ur —e1) 4(eo — e1) (uz2 — ao)(uz2 — az)

and the diagram is

[ e | e ]
\
[ a0 | a ] (88)
{2} Horospherical coordinates:
. (11 — eg)(uz — ag) (1 — eq)
s1+is0)° = R? s2+52) = RP—
(s 02) (1 — e0) it = R e
53% — RZM
(eo —e1)
where the infinitesmal distance and diagram are given by
ds? — R_2 |:_ du% . (u1—e1) du% :|
2 | (u1—e)(uy—ex) (e1—ea) (uz —ap)?
[ e | e ]
\
[ 4§ 1 (89)
{3} Elliptical coordinates:
2 o (1 — eo)(uz2 — eo) 2 _ R2 (1 — e1)(uz — e1)
! (e0 — e1)(e0 — €2) 2 (e1 — eo)(e1 — €2)
2= o (1 —e2)(uz — e2)
g =

(e2 — e1)(e2 — e)
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The infinitesimal distance and diagram are given by

dui du% ]

(1 — e0)(uy — e1)(u1 — e2)  (uz — eo)(uz — e1)(uz — €2)

1
ds? = —ZRz(ul — us) |:

[eolet]ea].

{4} Degenerate elliptical coordinates of type 1:

(x +iy)? = R? (u1 — eo)(uz — eo)
(e1— eo)
(x2 + yz) _ _Rzi I:("tl —eo)(up — eo)i|
deo (e1 — eo)
2o R? (uy —e)(up —e1)
(eo — e1)?
The infinitesimal distance and diagram are given by
1 du? du?
ds?=—=R%*(u1 —u )|: 1 - 1 ] e?le].
4 VU ur — e02r—en)  (u1 — e0)2(ug — e1) Leglea]
{5} Degenerate elliptic coordinates of type 2:
. . 0
(x +iy)? = R*(u1 — eo)(uz2 — eq) 2(x +iy)z = —Rzg[(ul — ep)(uz — eo)]
0
X242 +2= R2.
The infinitesimal distance and diagram are given by
1 du? du?
ds? = —ZR%*(uy — 1 2 3
’ g R ) [(ul —e)®  (uz —ep)® Leo]
5.2. Euclidean two-space
For Euclidean two-space we have the following coordinate systems.
(1) Ellipsoidal coordinates:
2o 2 (v1 — bo) (v2 — bo) 2_ 2 (v1 = b1)(v2 — by)
(bo — b1) (b1 — bo)
with infinitesimal distance given by
2 d 2 d 2
dS2 = —C—(vl — vz) |: 1 - Y2 i|
4 (v1 —bo)(v1 — b1)  (v2 — bo)(v2 — by)

and diagrambg|b1).
(2) Degenerate elliptic coordinates:

(x +iy)? = c?(v1 — €0)(v2 — o) x2+y% = ¢2(2e0 — v1 — 1))

with infinitesimal distance given by

2 d 2 d 2
ds2 = —C—(vl — vg) |: Ul U2 ]

4 (v1—e0)?  (v2 — €g)?

and diagrane3).
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(3) Spherical coordinates:

2= (v — eo)w y2 = (v — eO)M

(a1 — ao) (a0 — a1)
with infinitesimal distance and diagram given by

2 2

ds2 = 1- [L — (v1 — 6‘0) dU2 i|

41 (v1—eo) (v2 — ao)(v2 — a1)
( e | e ) (90)
\
[ a0 | a |

(4) Parabolic coordinates:

C
x% = —c?(v1 — eg) (v2 — €p) y= E(vl +vp) — cep

with infinitesimal distance and diagram given by

2 c? dvf dv%
o= Z(vl — v |:(U1 —e0) (v eo)} (€o)
(5) Degenerate parabolic coordinates:
c s C . c ,» C
x=—c—v ) y=i[—ci-w)? - Zit)|

with infinitesimal distance and diagram given by

2
ds? = Cz(vl — )(dv? — dv?) (#).

We work out a few cases. As afirst example let us consider degenerate elliptic coordinates
of type 1. The Helmholtz equation for this coordinate system has the form

4
=5 [(ul — eg)a/uy — e20,, (U1 — eg)/u1 — €19,
R*(ug — uz)
e+
— (uz — e0)/uz — €104, (uz — eo)/uz — €19, | ¥ = —T‘U

The separable solutions ade= v (u1) 2 (u2) with separable equations
A4(u — eg)/u — €19, (u — eo)/u — e1d, Y + (L(€ + Du + )y = 0.

If we choose the new variable= /(u — e3)/(u — e1) then the separation equation has the
form

E"‘l 2
[<1—z2>83—2zaz+v<v+1>—( 2)}“0
. 1—Z2

where
n—epl(+1)

1
¥ = (u—eq) v+l =+
4 e — e

1
The equation for is clearly recognizable as having the solutians= Pf+2(z) and

1
Qf+2(z), Legendre functions of the first and second kind [4]. From the point of view of
contractions we are interested in the limjt — oo. This corresponds to the diagrammatic
limit

H 2 2
lim [egles] — {ep)-
e1—>00
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From the form of the infinitesmal distance we expect to obtain degenerate elliptic
coordinates in Euclidean space. Indeed if we consigdes n?, JZ+% — ny for the separation
functionsyr then one can derive

u —n?

rdA—nyx)P)*

C[mx
— —I 7(14 - eo)l/AHv(i)% (x/u = eq)

u — €p

v+l —n2 / i
(I’lX) Qn)( u—n N %ej(u — eo)%j‘ﬁ% (X«/M — eo)

FCA+v+ny) " u— eg

asn — oo. HereH'® (w) is a Hankel function of the second kind.
The second possible limit is whep — oo. This corresponds to the diagrammatic limit

lim [eglel] — (ey).

eg— 00
In this case we consider the equation goand take the limits

eg—> n {— na viv+1l — —na(1—4x)+n2a2.
In particular, if we choose such that

Vo> —na—1+2¢+---

then we obtain

1 1 u—e i
2 (Z tx - an) P oy ( l) — 2re Feaete

u—n

1 F 1 1
X ml 1<Z—Xa§»05(’4—91)>

Zia%(u —el)% P (3 3 ( ))
- - —x, =, au—e
F(%"'X) i\a %2 !

_ _ 3in 1 na+i u—e;x 1 imq_ Lo(u—e
2 nate 2 [0 <Z +X _}’l(x> Q—na2—1+2)(... ( » _n) — 7-[2e2( X)e sa(u—e1)
_1
x{272T (5 + 1F1(G — X, 5, a(u — e1))
i 1 151-/3 3 3
—laz(u —e1)222T (3 + x)1F1(3 — X, 5, a(u — e1)}

asn — oo.
There is one more interesting limit of this type. This corresponds to letting oo in
degenerate elliptic coordinates of type 2, i.e.,

lim [ed] — {¢).
eg— 00
The Laplace—Beltrami eigenvalue equation in these coordinates is

A(u1 — €0)d7, + 3(u1 — €0)*dy, — (uz — €0)>37, + 3(uz — €0)*0,,] ¥
—L(+ D) (ug —u)¥v =0.

The corresponding separation equations have the form

[4(u — e0)0? + 3(u — €0)?d, — (£ + 1)(u — eg) + 4A]y (u) = O.



4728 E G Kalnins et al

The solutions of this equation are readily calculated to be

Y) = (u — e)) YACpus (z\@)

whereC,(z) is a Bessel function [4]. Fafy — oo we would like to end up with degenerate
elliptic coordinates. The way to achieve this is to take
eo — n? ¢ — 2xn® r— —x%n®— %Xn5+,un6.
Then we obtain the limit
1
1\?2 x2n8+ L yn5 — un 17 2
<2)(n3 + E) JZX"B"'% 2\/ 22 - ; 5(“ - er)

nc—r

23
K (w)
3 2§X2

the latter function being a solution of the separation equations.

(NI

6. Contractions between coordinate systems within a space

In the previous section we have examined the relations between the special functions obtained
by contracting from the complex two-dimensional sphere to the complex Euclidean plane.
Here we examine the consequences of taking limits of coordinate systi¢hiseach of the
manifoldsE, and S, and derive the relations between the corresponding special functions.

6.1. The complex two-sphere

(a) Consider the limit associated with the diagrammatic scheme
[eolealez] — [efled]
or equivalentlye, — eg. In this limiting case the various forms of Lanpolynomials have
as their limiting forms suitable Legendre polynomials. For the purposes of this case it is
convenient to consider the separation equations in degenerate ellipsoidal coordinates. Indeed,

if we choose the variable = /(u — e5)/(e1 — e») then the separation equations have the
form

m2
[(1—x2)a?—2xax+e(e+1)— :|(p:0
X 1—x2
wherem? = (u + e1€(£ + 1))/(ex — e»). The solutions are Legendre functioR$' (x) and
Q7 (x). In order to take the limit we examine the case of a Egmolynomial of the species
which can be written in the formi|_, (1 — u/6;) where thed; are the solutions of the Niven
equations (81). We write th®y equation in the form

q
[(01 — e1) (01 — e2) + (01 — e1) (01 — eo) + (61 — e0) (01 — e2)] 1_[(91 —0;)
i=1

+4(01 — e0) (01 — e1) (01 — e2)[(01 — 63) ... (61— 0,) +---] = 0.
We see that the equation is satisfied whgl: ¢g by the choic#; = ¢o. From this observation
the limite, — ¢g can be considered to be accompanied by the requirement thad) of the
6, take the valueo. The remaining; then satisfy the equation

4o +2 1 4

+ + 0
23

9]-—60 9]'—61 i j—Qi
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fori,j=0+1,...,q. We are at liberty to takey = 1 ande; = 0. The appropriate limit in
this case is

o+2r u oaroz (=) (r+o)! )

for r > o. Other families of Laré polynomials have similar limits:

S potr+l _u 1o 2,+1(r—c7)!(r+o+1)! 20+1
—1)?7177 (1 9,») — (=1)°2 2+ 2072 P3N (Vu)
where
4o+4 1 4
+— =0
0 —1 0, #jej—e,
1 —o+2r+l _u 2r+1(r_0)!(r+0+1)! 2
w2523 (1 5) 2 2 +20+2) P32 (V)
where
4o+4 3 4
+ — + =
;-1 9 #jej—e,
and
TS s 4ol = =Dlr+o+1D! , 4
uz(u—1)217%4 (1 0j>—>( 1) 2 > %20 % 2) P2 (Ju)
where
4o+2+§+2 4 _0
0j—1 6; 6,6,

In all these cases itis understood that =0 +1,...,g Whereg = o +2roro +2r +1 as
the case may be. We are, of course, assumingithéy, . . . , 6, are all equal to one.
(b) In this case let us consider the limig3[e;] — [e3], which is tantamount to
e1 — eg. From our previous work we know that the special functions associated with the

“=41y where
€0

u—

-1 _¢-1
coordinate systeme§|e;] are Legendre functions, ‘ 2( Z%j;) and sz 2(
v(+1) = I+ (1 —eol(£+1))/(eo — e1). If we takee; = eg + € the limits are

_ _ 2
L) - ottt (e ) g (2
ta u—ep 2 2 u— e

st W a e

_¢—5 1_7[7; 1 1 m
2 | —| T (Z=¢elr(=Z+¢)J

2 |:2 <2 ) ( 2 > —z-%( u—eo)
3 1 L n
5 0 — =) (=122

+2(2+E)F< ¢ 2)( 1)z 2]“;( M_eo)]




4730 E G Kalnins et al

6.2. Two-dimensional Euclidean space

(a) Letus considerthe diagrajep|er) — <eg>, i.e., atransformation from elliptical coordinates
in the plane to degenerate elliptical coordinates. In the case of elliptical coordinates the basic
separation equations have the form

1 1
+

u—eo u—ex

4(v — eg) (v — e1) [33 + % { } av:| @+ (=7 + x%c*(v — eg))g = 0.

We can assume thap = 0 and takee; = b. If we setv = bcosH 6 then the separation
equation becomes
(82 —a+2k*coshB)® =0

which is a recognized form of Mathieu’s equation With= x2¢?b/4,a = —v? — x2c?b/2. If

b — 0 in the separation equation, the resulting solutions have the (mcv*/?). In order

to be consistent with our limiting procedures we introduce an algebraic notation for Mathieu
functions according to

CE,(v,q) =Ce,(0,q) SE,(v,q) = Se, (0, q)

whereq = k? = %chzb andv and6 are related as above. The corresponding limits that we
seek are then

(=) Ag™"
ce2, (0, g)cezn (5, q)
(=) (GxebD AP
cezn+1(0, g)ces,, 1 (5. q)
(=1" Gxeb? B

S€/2m+1(0, Q)Sezm+(%: C])

CE2y (v, q) = Jon(xcv?)

1/2)

CEop+1(v, q) = Jom+1(xcv

SEzmi1(v, @) — Jame1(xcv'/?)

and
(— 1)m+1i_L1X 2C2bB§2m+2)
Se,2m+]_(07 Q)Se/zmﬂ(% ’ CI)

(b) Consider the limit corresponding to the diagram,lid (eole1) — (ep). Take the

Mathieu equation as previously witlg = 0 ande; = b, and the choice = bsirf 0. With

a=v%—1x2c%b, g = % x?c?b this equation assumes the form

(82 +a +2q cosh)® = 0.

In order to obtain a suitable limit ds— oo we takev? = (21 + 3)b and x2c? = 2. From
these choices we see thavifs fixed therp is small and we have the relatién= /v/b. The
corresponding limits can now be calculated:

Vi) L TGom ()

SEZWZ"'Z(U’ C]) — J2m+2(XCU1/2).

cen, (0, —f—B) 7.[1/2211
b 1
seznrt (/5. —15) L e mm (Vv)
I (0, -1 Ve
S€2n+l( > 16)

whereD, (z) is a parabolic cylinder function.
(c) Let us consider the limit corresponding to the diagram, i (e3) — {¢}. The
separation equations for this coordinate system have the form

{4[(v — €0)?02 + (v — €0)d,] — V2 + ®x2(v — e0)}p = 0
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for v = vy, vy. In order to achieve this limit we can take

er — n? > > —n? p? - X2n4 + ,an.

The solutions for the functiop are C,(x+/v — eg). The corresponding solutions for the
limiting equation [42 + x?v — B]g = 0 are the Airy functionsti[ (8 — x2v)2~%/3x~%3] and
Bi[(B — x?v)272%/3x~%3], [20]. The limiting formula relating these solutions is

2,2 (1; L
Ai [ B } 7 (12x°n*) Syn2r bt (—ing) o A [m]

2x?) r'3) (202)3

asn — oo.
(d) The last limiting process that we achieve can be represented gs difteo) — {¢}.
The separation equations for this coordinate system have the form

{4[(v — e0)dZ + 23,1+ 2+ c*x*(v — e0)}p = 0

for v = v1, vo. In order to achieve this limit we can take

eg —> n® X —>on A — an +o%n?.

The solutions for the functiop are D,L%(iZé”/“[x(v — ¢0)]¥?). The corresponding

solutions for the limiting equation P + o%v + u]lp = 0 are typically of the form
3

(0%v+w)Y2Cy (%ﬁfﬁ). Indeed the appropriate limit in this case is

2%i(an3+ﬁn)+g )
o i 2 %
ml)qmugm_%(ize“ [on(v —n%)]2) —

(UZU*’IJ«)%é% @ 2(020"'#)%
o312 3 302

asn — oQ.
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